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Abstract— In this paper, we present TeachNet, a novel neural
network architecture for intuitive and markerless vision-based
teleoperation of dexterous robotic hands. Robot joint angles
are directly generated from depth images of the human hand
that produce visually similar robot hand poses in an end-
to-end fashion. The special structure of TeachNet, combined
with a consistency loss function, handles the differences in
appearance and anatomy between human and robotic hands.
A synchronized human-robot training set is generated from
an existing dataset of labeled depth images of the human
hand and simulated depth images of a robotic hand. The final
training set includes 400K pairwise depth images and joint
angles of a Shadow C6 robotic hand. The network evaluation
results verify the superiority of TeachNet, especially regarding
the high-precision condition. Imitation experiments and grasp
tasks teleoperated by novice users demonstrate that TeachNet
is more reliable and faster than the state-of-the-art vision-based
teleoperation method.

I. INTRODUCTION

Robotic dexterous hands provide a promising base for
supplanting human hands in the execution of tedious and
dangerous tasks. When autonomous manipulation of dex-
terous hands handles complex perception , teleoperation is
superior to intelligent programming when it comes to taking
fast decisions and dealing with corner cases.

Unlike contacting or wearable device-based teleoperation,
markerless vision-based teleoperation [1] offers the advan-
tages of showing natural human-limb motions and of being
less invasive. Analytical vision-based teleoperation falls into
two categories: model- and appearance-based approaches.
Model-based approaches [2], [3] provide continuous solu-
tions but are computationally costly and typically depend
on the availability of a multicamera system [4]. Conversely,
appearance-based approaches [5], [6] recognize a discrete
number of hand poses that correspond typically to the
method’s training set without high computational cost and
hardware complexity. Recently, an increasing number of
researchers have been focusing on the data-driven vision-
based teleoperation methods which get the 3D hand pose
or recognize the class of hand gestures using first the
deep convolutional neural network (CNN) then mapping the
locations or the corresponding poses to the robot. However,
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Fig. 1. Our vision-based teleoperation architecture. (Center) TeachNet is
trained offline to predict robot joint angles from depth images of a human
hand using our 400k pairwise human-robot hand dataset. (Left)Depth images
of the operator’s hand are captured by a depth camera then feed to TeachNet.
(Right) The joint angles produced by TeachNet are executed on the robot
to imitate the operator’s hand pose.

all these solutions not only strongly depend on the accuracy
of the hand pose estimation or the classification but also
suffer the time cost of post-processing.

We instead seek to take a noisy depth image of the human
hand as input and produce joint angles of the robot hand
as output by training a deep CNN. The end-to-end vision-
based teleoperation can be a natural and an intuitive way to
manipulate the remote robot and is user-friendly to the novice
teleoperators. Therefore, it is essential to design an efficient
network which could learn the corresponding robot pose
feature in human pose space. Since the end-to-end method
depends on massive human-robot teleoperation pairings, we
aim to explore an efficient method which collects synchro-
nized hand data both for the robot and the human.

In this paper, we present a novel scheme for teleoperating
the Shadow dexterous hand based on a single depth image
(see Fig. 1). Our primary contributions are: 1) We propose an
end-to-end teacher-student network(TeachNet), which learns
the kinematic mappings between the robot and the human
hand. 2) We build a pairwise human-robot hand dataset that
includes pairs of depth images in the same gesture, as well as
corresponding joint angles of the robot hand. 3) We design
an optimized mapping method that matches the Cartesian
position and the link direction of shadow hand from the
human hand pose and properly takes into account possible
self-collisions.

During the network evaluation, TeachNet achieves higher
accuracy and lower error compared to other end-to-end
baselines. As we illustrated in our robotic experiments, our
method allows the Shadow robot to imitate human gestures
and to finish the grasp tasks significantly faster than state-
of-the-art data-driven vision-based teleoperation.



II. RELATED WORK

Markerless Vision-Based Teleoperation. Human teleopera-
tion of robots has usually been implemented through contact-
ing devices such as tracking sensors [7], gloves instrumented
with angle sensors [8], [9], inertial sensors [10] and joysticks
[11]. Stanton et al. [12] suggest an end-to-end teleoperation
on a 23 degree of freedom (DOF) robot by training a feed-
forward neural network for each DOF of the robot to learn
the mapping between sensor data from the motion capture
suit and the angular position of the robot actuator to which
each neural network is allocated. However, wearable devices
are customized for a certain size range of the human hand
or the human body, and contacting methods may hinder
natural human-limb motion. Compared to these methods,
markerless vision-based teleoperation is less invasive and
performs natural and comfortable gestures.

Visual model-based methods, such as [2], [3], compute
continuous 3D positions and orientations of thumb and index
finger from segmented images based on a camera system
and control a parallel jaw gripper mounted on a six-axis
robot arm. Romero [5] classifies human grasps into grasp
classes and approaches based on human hand images then
maps them to a discrete set of corresponding robot grasp
classes following the external observation paradigm.

Compared to analytical methods, data-driven techniques
place more weight on object representation and perceptual
processing, e.g., feature extraction, object recognition or
classification and pose estimation. Michel et al. [13] provide
a teleoperate method for a NAO humanoid robot that tracks
human body motion from markerless visual observations
then calculates the inverse kinematics process. But this
method does not consider the physical constraints and joint
limits of the robots, so it easily generates the poses that
the robot cannot reach. Nevertheless, these methods strongly
depend on the accuracy of the hand pose estimation or the
classification and lose much time for post-processing. In this
work, we aim to design an end-to-end vision-based CNN
which generates continuous robot poses and provides the fast
and intuitive experience of teleoperation.
Depth-Based 3D Hand Pose Estimation. 3D hand pose
estimation typically is one of the essential research fields in
vision-based teleoperation. Although the field of 3D hand
pose estimation has advanced rapidly, isolated 3D hand pose
estimation only achieves low mean errors (10 mm) in the
view point range of [70, 120] degrees [14]. According to
the representation of the output pose, the 3D hand pose es-
timation methods consist of detection- and regression-based
methods. Detection-based methods [15] give the probability
density map for each joint, while regression-based methods
[16], [17] directly map the depth image to the joint locations
or the joint angles of a hand model. Regardless of whom the
output joint pose belongs to, the regression-based network is
similar to our end-to-end network.
Master-Slave Pairing in Teleoperation. To learn the pose
feature of the robot from the images of the human hand, we
have to consider how to get a vast number of the human-robot

Alignment 
    Layer

L
cons

L
stud

L
teach

Embedding
    Module

Encoder
 Module

Regression 
    Module

I
H

z
H

z
R

FC BN R4 Residual Module =

I
R

   £
H

£
R

Fig. 2. TeachNet Architecture. Top: human branch, Bottom: robot branch.
The input depth images IH and IR are fed to the corresponding branch
that predicts the robot joint angels ΘH , ΘR. The residual module is a
convolutional neural network with a similar architecture as ResNet [18]. FC
denotes a fully-connected layer, BN denotes a batch normalization layer, R
denotes a Rectified Linear Unit.

pairings. Prior work in [12], [19], [20] acquired the master-
slave pairings by demanding a human operator to imitate the
robot motion synchronously. The pairing data is costly to
collect like this and typically comes with noisy correspon-
dences. Also, there is no longer an exact correspondence
between the human and the robot because physiological
differences make the imitation non-trivial and subjective to
the imitator. In fact, the robot state is more accessible and
is relatively stable concerning the human hand, and there
are many existing human hand datasets. Since training on
real images may require significant data collection time, an
alternative approach is to learn on simulated images and
to adapt the representation to real data [21]. We propose
a novel criterion of generating human-robot pairing from
these results by using an existing dataset of labeled human
hand depth images, manipulating the robot and recording
corresponding joint angles and images in simulation, and
performing extensive evaluations on a physical robot.
Teleoperation Mapping Methods. Conventional teleopera-
tion mapping methods are divided into three main categories:
joint mapping which is useful for power grasps [22], fingertip
mapping which is suitable for precision grasps [23], and
pose mapping which interprets the function of the human
grasp rather than replicating hand position [24]. However, in
most cases considering only one type of mapping method
is not enough [25]. For example, fingertip mapping neglects
the position and orientation of the phalanges and does not
consider the special mechanical difference between the slave
and the master.

III. TEACHER-STUDENT NETWORK

Solving joint regression problems directly from human
images is quite challenging because the robot hand and
the human hand occupy two different domains. Specifically,
imagine that we have image IR of a robotic hand and image
IH of a human hand, while the robotic hand in the image
acts exactly the same as the human hand. The problem of



mapping the human hand image to the corresponding robotic
joint could be formulated as below:

ffeat : IH ∈ R2 → zpose

fregress : zpose → Θ.
(1)

To better process the geometric information in the input
depth image and the complex constraints on joint regression,
we adopt an encode-decode style deep neural network. The
upper branch in Fig. 2 illustrates the network architecture we
used. However, the human hand and shadow hand basically
come from different domains, thus it could be difficult for
ffeat to learn an appropriate latent feature zpose in pose
space. In contrast, the mapping from IR to joint target Θ
will be more natural as it is exactly a well-defined hand pose
estimation problem. Intuitively, we believe that for a paired
human and robotic image, their latent pose features zpose
should be encouraged to be consistent as they represent the
same hand pose and will be finally mapped to the same joint
target. Also, based on the observation that the mapping from
IR to Θ performs better than IH (these preliminary results
can be found in Fig. 5), the encoder ffeat of IR could extract
better pose features, which could significantly improve the
regression results of the decoder.

With these considerations above, we propose a novel
teacher-student network (TeachNet) to tackle the vision-
based teleoperation problem (1) in an end-to-end fashion.
TeachNet consists of two branches, the robot branch which
plays the role of a teacher and the human branch as the
student.
Joint angle loss. Each branch is supervised with a mean
squared error (MSE) loss Lang :

Lang = ‖Θ− J‖2, (2)

where J is the groundtruth joint angles.
Besides the encoder-decoder structure that maps the input

depth image to joint prediction, we define a consistency loss
Lcons between two latent features zH and zR to exploit
the geometrical resemblance between human hands and the
robotic hand. Therefore, Lcons forces the human branch to be
supervised by a pose space shared with the robot branch. To
explore the most effective aligning mechanism, we design
two kinds of consistency losses and two different aligning
positions:
Hard consistency loss. The most intuitive mechanism for
feature alignment would be providing an extra mean squared
error (MSE) loss over the latent features of these two
branches:

Lcons h = ‖zH − zR‖2. (3)

Soft consistency loss. Sometimes, (3) could distract the
network from learning hand pose representations especially
in the early training stage. Inspired by [26], we feed zH and
zR into a discriminator network D [27] to compute a realism
score for real and fake pose features. The soft consistency
loss is basically the negative of this score:

Lcons s = log (1−D(zH)) . (4)
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Fig. 3. Pipeline for dataset generation. (Top left) The human hand model
has 21 joints and moves with 31 degrees of freedom in the BigHand2.2M
dataset. (Bottom left) A depth image example from the BigHand2.2M
dataset. (Middle) Optimized mapping method from the human hand to
the Shadow hand. (Top right) The Shadow hand with BioTac sensors has
24 joints and moves with 19 degrees of freedom. (Bottom right) The
corresponding RGB and depth images of Shadow gestures obtained from
Gazebo. The colored circles denote the joint keypoint positions on the hand,
and the green triangles denote the common reference frame F .

As for the aligning position, we propose early teaching
and late teaching respectively. For the former, we put the
alignment layer after the encoder and embedding module,
while in the latter the alignment layer is positioned on the
last but one layer of the whole model (which means that the
regression module will only contain one layer).

In the following, we will refer to early teaching by Lcons s

as Teach Soft-Early, late teaching by Lcons s as Teach Soft-
Late, early teaching by Lcons h as Teach Hard-Early, and
late teaching by Lcons h as Teach Hard-Late.

We also introduce an auxiliary loss to further improve our
teleoperation model:
Physical loss. The physical loss Lphy which enforces the
physical constraints and joint limits is defined by:

Lphy(Θ) =
∑
i

[max(0, (θmax−Θi))+max(0, (Θi−Θmin))].

(5)
Overall, the complete training objective for each branch is:

Lteach(Θ) = Lang + Lphy (6)

Lstud(Θ) = Lang + α ∗ Lcons + Lphy , (7)

where α = 1 for hard consistency loss and α = 0.1 for soft
consistency loss.

IV. DATASET GENERATION

Training the TeachNet which learns the kinematic mapping
between the human hand and the robot hand strongly relies
on a massive dataset with human-robot pairings. We achieve
this by using the off-the-shelf human hand dataset Big-
Hand2.2M Dataset [28] and an optimized mapping method
using the pipeline of Fig. 3. With this pipeline, we collect
a training dataset that contains 400K pairs of simulated
robot depth images and human hand depth images, with
corresponding robot joint angles and poses.



A. Human-Robot Hand Kinematic Configuration

The Shadow Dexterous Hand [29] used in this work
is motor-controlled and equipped with 5 fingers, and its
kinematic chain is shown in the right side of Fig. 6. Each
of these fingers has a BioTac tactile sensor attached which
replaces the last phalanx and the controllability of the last
joint. Each finger has four joints, the distal, middle, proximal,
and the metacarpal joint, but the first joint of each finger is
stiff. The little finger and the thumb are provided with an
extra joint for holding the objects. Summed up, this makes
17 DOF plus two in the wrist makes 19.

In contrast to the robot hand, the human hand model from
BigHand2.2M dataset has 21 joints and can move with 31
DOF, as shown in Fig. 3. The main kinematic differences
between the robot hand and the human hand are the limited
angle ranges of the robot joints and the structure of the wrist
joints. Simplifying the dissimilarity between the Shadow
hand and the human hand, two wrist joints of the Shadow at
0 rad are fixed and only 15 joint keypoints which are TIP,
PIP, MCP in each finger of the Shadow are considered.

B. Optimized Mapping Method

Effectively mapping the robot pose from the human hand
pose plays a significant role in our training dataset. In order
to imitate the human hand pose, we propose an optimized
mapping method integrating position mapping, orientation
mapping and properly taking into account possible self-
collisions.

Firstly, we use the common reference frame F located at
the human wrist joint and 34mm above the z-axis of the robot
wrist joint. Note that 34mm is the height from the wrist joint
to the base joint of the thumb. These locations are chosen
because they lie at locations of high kinematic similarity.
Secondly, we enforce position mapping to the fingertips with
a strong weight ωpf and to PIP joints with minor weight ωpp.
Thirdly, direction mapping with weight ωd is applied to five
proximal phalanges and distal phalanges of thumb. In our
dataset, we set {ωpf , ωpp, ωd} = {1, 0.2, 0.2}.

Taking advantage of BioIK solver [30] to determine the
robot joint angles Θ ∈ R17, the robot execute movements in
Gazebo and check self-collision by MoveIt. In case BioIK
gives a self-collision output, we define a cost function Fcost

which measures the distance between two links

Fig. 4. The Shadow depth images from nine viewpoints corresponding to
one human gesture in our dataset.

Fcost = max(0, R col − ‖Pi − Pj‖2), (8)

where Pi, Pj respectively denote the position of link i, link
j, R col is the minimum collision free radius between two
links.

Considering the BigHand2.2M dataset spans a wide range
of observing viewpoints to the human hand, it is indispens-
able to increase the diversity of viewpoints of the robot data.
Thus we collect visual samples of the robot through nine
simulated depth cameras with different observing positions
in Gazebo and record nine depth image for each pose si-
multaneously. As an example, in Fig. 4 we present the depth
images of the robot from nine viewpoints corresponding to
the human hand pose at the bottom left in Fig. 3.

V. EXPERIMENT

A. TeachNet Evaluation

We examined whether the TeachNet could learn more
indicative visual representations that were the kinematic
structure of the human hand. The proposed TeachNet was
evaluated on our paired dataset with the following experi-
ments: 1) To explore the appropriate position of the align-
ment layer and the proper align method, we compared the
proposed four network structures: Teach Soft-Early, Teach
Soft-Late, Teach Hard-Early, and Teach Hard-Late. 2) To
validate the significance of the alignment layer, we designed
an ablation analysis by removing consistency loss Lcons and
separately training the single human branch and the single
robot branch. We respectively refer to these two baselines as
Single Human and Single Robot. 3) We compared our end-to-
end method with the data-driven vision-based teleoperation
method which mapped the position of the robot from the
human joint locations based on the 3D hand estimation. We
refer to this baseline as HandIK solution. There were three
evaluation metrics used in this work: 1) the fraction of frames
whose maximum/average joint angle errors are below a
threshold; 2) the fraction of frames whose maximum/average
joint distance errors are below a threshold; 3) the average
angle error over all angles in Θ.

The input depth images of all network evaluations were
extracted from the raw depth image as a fixed-size cube
around the hand and resized to 100×100. Note that although
we have nine views of Shadow images which correspond to
one human pose, during the training process of the TeachNet
we randomly chose one view of Shadow images to feed
into the robot branch. For the HandIK solution, we trained
the DeepPrior++ network on our dataset, and the reason
we chose DeepPrior++ was that its architecture was similar
to the single branch of TeachNet. We obtained the 21 × 3
human joint locations from DeepPrior++ then used the same
mapping method in section IV to acquire the joint angles of
the Shadow hand.

The comparative results, shown in Fig. 5 and Fig. 6,
indicate that the Single Robot method is the best concerning
all evaluation metrics and has the capability of the training
”supervisor”. Meanwhile, the Teach Hard-Late method out-
performs the other baselines, which verifies that the single
human branch is enhanced through an additional consistency
loss. Especially regarding the high-precision condition, only



Fig. 5. The fraction of frames whose maximum/average joint angle/distance error are below a threshold between Teach Hard-Late approach and different
baselines on our test dataset. These show that Teach Hard-Late approach has the best accuracy over all evaluation metrics.

Fig. 6. (Left) Comparison of average angle error on the individual joint between the Teach Hard-Late approach and different baselines on our test dataset.
FF means the first finger, LF means the little finger, MF means the middle finger, RF means the ring finger, TH means the thumb. (Right) The kinematic
chain of the Shadow hand. In this work, joint 1 of each finger is stiff.

TABLE I
ACCURACY UNDER HIGH-PRECISION CONDITIONS

Max Err. Single Human Teach Soft-Early Teach Soft-Late
0.1 rad 21.24% 12.31% 12.77%
0.15 rad 45.57% 38.06% 10.37%
0.2 rad 69.08% 63.18% 26.16%

Max Err. Teach Hard-Early Teach Hard-Late Hand IK
0.1 rad 7.40% 24.63% 0.00%
0.15 rad 24.67% 50.11% 0.14%
0.2 rad 45.63% 72.04% 0.62%

the Teach Hard-Late approach shows an average 3.63%
improvement of the accuracy below a maximum joint angle
which is higher than that of the Single Human method
(Table I). We refer that the later feature space ffeat of
the depth images contains more useful information and
the MSE method displays the stronger supervision in our
case. And the regression-based HandIK method shows the
worst performance among our three metrics. The unsatisfying
outcome of the HandIK solution is not only down to our
network giving a better representation of the hand feature
but also due to the fact that this method does not consider
the kinematic structure and the special limitation of the robot.
Furthermore, direct joint angle regression should have decent
accuracy on angles since that is the learning objective. The
missing Lphy also gives rise to poor accuracy.

Moreover, Fig. 6 demonstrates that the second joint, the
third joint and the base joint of the thumb are harder to be
learned. These results are mainly because that 1) The fixed
distal joints of the robot in our work affect the accuracy of

its second joint and third joint. 2) these types of joints have
a bigger joint range than other joints, especially the base
joint of the thumb. 3) there is a big discrepancy between the
human thumb and the Shadow thumb.

B. Robotic Experiments

To verify the reliability and intuitiveness of our method,
real-world experiments were performed with five grown-
up subjects. The slave hand of our teleoperation system is
the Shadow dexterous hand where the first joint of each
finger is fixed. The depth sensor is the Intel RealSense F200
depth sensor which is suitable for close-range tracking. The
poses of the teleoperators’ right hand are limited to the
viewpoint range of [70◦, 120◦] and the distance range of
[15mm, 40mm] from the camera. Since the vision-based
teleoperation is susceptible to the light situation, all the
experiments were carried out under a uniform and bright light
source as much as possible. The average computation time
of the Teach Hard-Late method is 0.1051s(Alienware15 with
Intel Core i7-4720HQ CPU). Code and video are available
at https://github.com/TAMS-Group/TeachNet Teleoperation.

1) Simulation Experiments: The five novice teleoperators
stood in front of the depth sensor and performed 0-9 in
American sign language and random common gestures in
a disordered way, then teleoperated the simulated Shadow
robot.The operators did not need to know the control mecha-
nism of the robot and naturally implemented the experiment.

Qualitative results of teleoperation by the Teach Hard-
Late method are illustrated in Fig. 7. We can see that the

https://github.com/TAMS-Group/TeachNet_Teleoperation


Shadow hand vividly imitates human gestures of different
size of human hands. These experiments demonstrate that
the TeachNet enables a robot hand to perform continuous,
online imitation of human hand without explicitly specifying
any joint-level correspondences. Owing to the fact that we
fixed two wrist joints of the Shadow hand, we did not care
if the depth sensor captures the teleoperator’s wrist.

(a) Successful teleoperation results

(b) Failed teleoperation results

Fig. 7. Teleoperation results using the Shadow hand on real-world data.

However, visible errors occurred mainly with the second
joint, the third joint of the fingers, and the base joint of the
thumb, probably caused by the special kinematic structure of
the slave, occlusions and the uncertain lighting conditions.

2) Manipulation Experiments: We compared the Teach
Hard-Late method with the deep prior++ HandIK method
on a slave robot. To simplify our experiments, we set the
control mode of the robot to be the trajectory control within
a proper maximum force for each joint. We used time to
complete an in-hand grasp and release task as a metric for
usability.

We placed a series of objects in the slave hand which was
in the open pose one at a time to facilitate easier grasping
with the robotic fingers and asked subjects to grasp them up
then release them. The objects used for the grasp and release
tasks were: a water bottle, a small mug, a plastic banana, a
cylinder can, and a plastic apple. We required the operators
to use power grasp for the water bottle and the mug, and
to use precision grasp for other objects. If the user did not
complete the task in four minutes, they were considered to
be unable to grasp the object.

Table II numerically shows the average time a novice took
to grasp an object using each of the control methods. We
find that the low accuracy, especially for the thumb, and the
post-processing of the HandIK solution results in a longer
time to finish the task. The users needed to open the thumb
first then perform proper grasp action, so HandIK solution
shows worse performance for the objects with a big diameter.
Besides that, grasping the banana took the longest time on
our method because the long and narrowly shaped object
needed more precious fingertip position.

TABLE II
AVERAGE TIME A NOVICE TOOK TO GRASP AND RELEASE AN OBJECT

Methods Bottle Mug Banana Can Apple Average
Hand IK 44.15 46.32 35.78 25.50 30.22 36.394

Ours 23.67 18.82 25.80 19.75 15.60 20.728

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a systematic vision-based method for
finding kinematic mappings between the anthropomorphic
robot hand and the human hand. This method develops an
end-to-end teacher-student network (TeachNet) and creates
a dataset containing 400K pairs of the human hand depth
images, simulated robot depth images in the same poses and
a corresponding robot joint angle. This dataset generation
method, which maps the keypoints position and link direction
of the robot from the human hand by an improved mapping
method, and manipulates the robot and records the robot
state in simulation, is efficient and reliable. By the network
evaluation and the robotic experiments, we verify the ap-
plicability of the Teach Hard-Late method to model poses
and the implicit correspondences between robot imitators and
human demonstrators. The experimental results also present
that our end-to-end teleoperation allows novice teleoperators
to grasp the in-hand objects faster and more accurately than
the HandIK solution.

Although our method performs well in real-world tasks,
it has some limitations. First, it requires the operator’s hand
in a fixed range and has a higher error of occluded joints.
Since 3D volumetric representation outperforms 2D input on
capturing the spatial structure of the depth data, training an
end-to-end model combining a higher level representation
would likely lead to more efficient training. Second, when
we manipulated the robot to grasp tasks, we did not consider
the precious tactile feedback of the robot. To perform more
complicated robotic tasks, we are going to use the tactile
modality of the Shadow hand combined with our teleopera-
tion method. In addition, we would like to extend our method
for teleoperating other body parts of the robots.
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