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Description Sitting at the edge of the bed and
facing the couch.

Question q : Can I go straight to the coffee table in
front of me?

Scene context : 3D scan, egocentric video, bird-
eye view (BEV) picture, etc.

Answer : No

Location (optional):

t t+1
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: a

Figure 1: Task illustration of Situated Question Answering in 3D Scenes (SQA3D). Given scene context S (e.g.,
3D scan, egocentric video, bird-eye view picture), SQA3D requires an agent to first comprehend and localize
its situation (position, orientation, etc.) in the 3D scene from a textual description stxt, then answer a question
q under that situation. Note that understanding the situation and imagining the corresponding egocentric
view correctly is necessary to accomplish our task. We provide more example questions in Figure 2.

ABSTRACT

We propose a new task to benchmark scene understanding of embodied agents:
Situated Question Answering in 3D Scenes (SQA3D). Given a scene context
(e.g., 3D scan), SQA3D requires the tested agent to first understand its situation
(position, orientation, etc.) in the 3D scene as described by text, then reason about
its surrounding environment and answer a question under that situation. Based
upon 650 scenes from ScanNet, we provide a dataset centered around 6.8k unique
situations, along with 20.4k descriptions and 33.4k diverse reasoning questions
for these situations. These questions examine a wide spectrum of reasoning ca-
pabilities for an intelligent agent, ranging from spatial relation comprehension
to commonsense understanding, navigation, and multi-hop reasoning. SQA3D
imposes a significant challenge to current multi-modal especially 3D reasoning
models. We evaluate various state-of-the-art approaches and find that the best one
only achieves an overall score of 47.20%, while amateur human participants can
reach 90.06%. We believe SQA3D could facilitate future embodied AI research
with stronger situation understanding and reasoning capabilities. Code and data
are released at sqa3d.github.io.

1 INTRODUCTION

In recent years, the endeavor of building intelligent embodied agents has delivered fruitful achieve-
ments. Robots now can navigate (Anderson et al., 2018) and manipulate objects (Liang et al., 2019;
Savva et al., 2019; Shridhar et al., 2022; Ahn et al., 2022) following natural language commands
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Figure 2: Examples from SQA3D. We provide some example questions and the corresponding situations (stxt

and ) and 3D scenes. The categories listed here do not mean to be exhaustive and a question could fall into
multiple categories. The green boxes indicate relevant objects in situation description stxt while red boxes are
for the questions q.

Embodied activities Navigation Common sense Multi-hop reasoning

𝒔txt: Standing in front of the
sink and facing the towels.
𝒒: Can I see myself in the
mirror?
𝒂: No

𝒔txt: Working by the desk and
the window is on my right.
𝒒: How many chairs will I pass
by to open the window from
other side of the desk?
𝒂: Three

𝒔txt: Just looking for some
food in the fridge.
𝒒: Which direction should I go
to heat my lunch?
𝒂: Right

𝒔txt: Playing computer games
and the window is on my right.
𝒒: How many monitors are
there on the desk that the chair
on my left is facing?
𝒂: One

or dialogues. Albeit these promising advances, their actual performances in real-world embodied
environments could still fall short of human expectations, especially in generalization to different
situations (scenes and locations) and tasks that require substantial, knowledge-intensive reasoning.
To diagnose the fundamental capability of realistic embodied agents, we investigate the problem of
embodied scene understanding, where the agent needs to understand its situation and the surround-
ings in the environment from a dynamic egocentric view, then perceive, reason, and act accordingly,
to accomplish complex tasks.

What is at the core of embodied scene understanding? Drawing inspirations from situated cog-
nition (Greeno, 1998; Anderson et al., 2000), a seminal theory of embodiment, we anticipate it to be
two-fold:

• Situation understanding. The ability to imagine what the agent will see from arbitrary situa-
tions (position, orientations, etc.) in a 3D scene and understand the surroundings anchored to the
situation, therefore generalize to novel positions or scenes;

• Situated reasoning. The ability to acquire knowledge about the environment based on the agents’
current situation and reason with the knowledge, therefore further facilitates accomplishing com-
plex action planning tasks.

To step towards embodied scene understanding, we introduce SQA3D, a new task that reconciles
the best of both parties, situation understanding, and situated reasoning, into embodied 3D scene
understanding. Figure 1 sketches our task: given a 3D scene context (e.g., 3D scan, ego-centric
video, or bird-eye view (BEV) picture), the agent in the 3D scene needs to first comprehend and lo-
calize its situation (position, orientation, etc.) from a textual description, then answer a question that
requires substantial situated reasoning from that perspective. We crowd-sourced the situation de-
scriptions from Amazon MTurk (AMT), where participants are instructed to select diverse locations
and orientations in 3D scenes. To systematically examine the agent’s ability in situated reasoning,
we collect questions that cover a wide spectrum of knowledge, ranging from spatial relations to
navigation, common sense reasoning, and multi-hop reasoning. In total, SQA3D comprises 20.4k
descriptions of 6.8k unique situations collected from 650 ScanNet scenes and 33.4k questions about
these situations. Examples of SQA3D can be found Figure 2.

Our task closely connects to the recent efforts on 3D language grounding (Dai et al., 2017; Chen
et al., 2020; 2021; Hong et al., 2021b; Achlioptas et al., 2020; Wang et al., 2022; Azuma et al.,
2022). However, most of these avenues assume observations of a 3D scene are made from some
third-person perspectives rather than an embodied, egocentric view, and they primarily inspect spa-
tial understanding, while SQA3D examines scene understanding with a wide range of knowledge,
and the problems have to be solved using an (imagined) first-person view. Embodied QA (Das
et al., 2018; Wijmans et al., 2019a) draws very similar motivation as SQA3D, but our task adopts a
simplified protocol (QA only) while still preserving the function of benchmarking embodied scene
understanding, therefore allowing more complex, knowledge-intensive questions and a much larger
scale of data collection. Comparisons with relevant tasks and benchmarks are listed in Table 1.

Benchmarking existing baselines: In our experiments, we examine state-of-the-art multi-modal
reasoning models, including ScanQA from Azuma et al. (2022) that leverages 3D scan data, Clip-
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Table 1: An overview of the different benchmark datasets covering grounded 3D scene understanding.
In general, we consider semantic grounding, language-driven navigation, and question-answering in photo-
realistic 3D scenes. In the first row, situated indicates whether the benchmark task is supposed to be completed
by a “situated” agent with its egocentric perspective. navigation, common sense, and multi-hop reasoning
show whether the task requires a certain capability or knowledge level of 3D understanding. ∗Rather than
observing a complete 3D scan of the scene, the learner needs to navigate in a simulator to perceive the 3D
scene incrementally.

dataset task situated? 3D text navi- common multi-hop #scenes #taskstype collection gation? sense? reasoning?

ScanNet (Dai et al., 2017) seg. ✗ scan n/a ✗ ✗ ✗ 800 rooms 1.5k

ScanRefer (Chen et al., 2020) det. ✗ scan human ✗ ✗ ✗ 800 rooms 52k
ReferIt3D (Achlioptas et al., 2020) det. ✗ scan human ✗ ✗ ✗ 707 rooms 41k

ScanQA (Azuma et al., 2022) q.a. ✗ scan template ✗ ✗ ✗ 800 rooms 41k
3D-QA (Ye et al., 2021) q.a. ✗ scan human ✗ ✗ ✗ 806 rooms 5.8k

CLEVR3D (Yan et al., 2021) q.a. ✗ scan template ✗ ✗ ✓ 478 rooms 60k

MP3D-R2R (Anderson et al., 2018) nav. ✓ ∗nav. human ✓ ✗ ✗ 190 floors 22k
MP3D-EQA (Wijmans et al., 2019a) q.a. ✓ ∗nav. template ✓ ✗ ✗ 146 floors 1.1k

SQA3D (Ours) q.a. ✓ scan human ✓ ✓ ✓ 650 rooms 33.4k

BERT (Lei et al., 2021) and MCAN (Yu et al., 2019) that exploits egocentric videos and BEV
pictures. However, the results unveil that both models still largely fall behind human performances
by a large margin (47.2% of the best model vs. 90.06% of amateur human testers). To understand
the failure modes, we conduct experiments on settings that could alleviate the challenges brought
by situation understanding. The improvement of these models confirms that the current models are
indeed struggling with situation understanding, which is pivotal for embodied scene understanding.
Finally, we explore whether powerful Large Language Models (LLMs) like GPT-3 (Brown et al.,
2020) and Unified QA (Khashabi et al., 2020) could tackle our tasks by converting the multi-modal
SQA3D problems into single-modal surrogates using scene captioning. However, our results read
that these models can still be bottlenecked by the lack of spatial understanding and accurate captions.

Our contributions can be summarized as follow:

• We introduce SQA3D, a new benchmark for embodied scene understanding, aiming at reconciling
the challenging capabilities of situation understanding and situated reasoning and facilitating the
development of intelligent embodied agents.

• We meticulously curate the SQA3D to include diverse situations and interesting questions. These
questions probe a wide spectrum of knowledge and reasoning abilities of embodied agents, rang-
ing from spatial relation comprehension to navigation, common sense reasoning, and multi-hop
reasoning.

• We perform extensive analysis on the state-of-the-art multi-modal reasoning models. However,
experimental results indicate that these avenues are still struggling on SQA3D. Our hypothesis
suggests the crucial role of proper 3D representations and the demand for better situation under-
standing in embodied scene understanding.

2 THE SQA3D DATASET

A problem instance in SQA3D can be formulated as a triplet ⟨S, s, q⟩, where S denotes the scene
context, e.g., 3D scan, egocentric video, bird-eye view (BEV) picture, etc.; s = ⟨stxt, spos, srot⟩
denotes a situation, where the textual situation description stxt (e.g., “Sitting at the edge of the bed
and facing the couch” in Figure 1) depicts the position spos and orientation srot of an agent in the
scene; Note that the agent is assumed to be first rotated according to srotat the origin of the scene
coordinate and then translated to spos; q denotes a question. The task is to retrieve the correct
answer from the answer set a = {a1, . . . , aN}, while optionally predicting the ground truth location
⟨spos, srot⟩ from the text. The additional prediction of location could help alleviate the challenges
brought by situation understanding. The following subsections will detail how to collect and curate
the data and then build the benchmark.

2.1 DATA FORMATION

The 3D indoor scenes are selected from the ScanNet (Dai et al., 2017) dataset. We notice that some
scenes could be too crowded/sparse, or overall tiny, making situations and questions collection infea-
sible. Therefore, we first manually categorize these scenes based on the richness of objects/layouts
and the space volume. We end up retaining 650 scenes after dropping those that failed to meet
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I. Situation Identification
Participants are asked to pick
and write description .

II. Question Preparation
Participants are asked to write question q given
the situation depicted in both and .

III. Answer Collection & Human Study
More participants are asked to answer question
q given the situation depicted only in .txts txts txts

poss rot,s

Figure 3: Data collection pipeline of SQA3D. Since our dataset comprises multiple types of annotations
(situations and their descriptions, questions, answers, etc.), we found it more manageable to break down a
single annotation task into three sub-tasks: i) Situation Identification; ii) Question Preparation; iii) Answer
Collection & Human Study, where the participants recruited on AMT only need to focus on a relatively simple
sub-task at a time.

the requirement. We then develop an interactive web-based user interface (UI) to collect the data.
Details of UI design can be found in appendix. All the participants are recruited on AMT.

Compared to counterparts, the annotation load of a single SQA3D problem instance could be sig-
nificantly heavier as participants need to explore the scene, pick a situation, make descriptions, and
ask a few questions. All these steps also require dense interaction with the 3D scene. To ensure
good quality, we introduce a multi-stage collection pipeline, which breaks down the load into more
manageable sub-tasks. Figure 3 delineates this process:

I. Situation Identification. We ask the workers to pick 5 situations by changing the location
⟨spos, srot⟩ of a virtual avatar in a ScanNet scene S. The workers are then instructed to write
descriptions stxt that can uniquely depict these situations in the scene. We also use examples and
bonuses to encourage more natural sentences and the use of human activities (e.g., “I’m waiting
for my lunch to be heated in front of the microwave”). All the collected situations are later manually
curated to ensure diversity and the least ambiguity. If necessary, we would augment the data with
more situations to cover different areas of the scene.

II. Question Preparation. We collect a set of questions w.r.t. each pair of the 3D scene S, and
the situation description stxt (the virtual avatar is also rendered at ⟨spos, srot⟩). To help prepare
questions that require substantial situated reasoning, we tutor the workers before granting them
access to our tasks. They are instructed to follow the rules and learn from good examples. We also
remove & penalize the responses that do not depend on the current situation, e.g. “How many chairs
are there in the room?”.

III. Answer Collection & Human Study. In addition to the answers collected alongside the ques-
tions, we send out the questions to more workers and record their responses. These workers are
provided with the same interface as in stage II except showing in the scene to ensure consistency
between question and answer collection. There is also mandatory scene familiarization in all three
steps before the main job starts and we find it extremely helpful especially for more crowded scenes.
More details can be found in appendix.

2.2 CURATION, DATA STATISTICS, AND METRICS

Curation. Our multi-stage collection ends up with around 21k descriptions of 6.8k unique situations
and 35k questions. Although the aforementioned prompt did yield many high-quality annotations,
some of them are still subject to curation. We first apply a basic grammar check to clean up the lan-
guage glitches. Then we follow the practices in VQAv2 (Goyal et al., 2017) and OK-VQA (Marino
et al., 2019) to further eliminate low-effort descriptions and questions. Specifically, we eliminate
& rewrite template-alike descriptions (e.g., repeating the same sentence patterns) and questions that
are too simple or do not require looking at the scene. We also notice the similar answer bias reported
in Marino et al. (2019) where some types of questions might bias toward certain answers. There-
fore, we remove questions to ensure a more uniform answer distribution. A comparison of answer
distribution before and after the balancing can be found in appendix. As a result, our final dataset
comprises 20.4k descriptions and 33.4k diverse and challenging questions. Figure 2 demonstrates
some example questions in SQA3D.

Statistics. Compared to most counterparts with template-based text generation, SQA3D is crowd-
sourced on AMT and therefore enjoys more naturalness and better diversity. To the best of our
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Figure 4: Word cloud of stxt in SQA3D.
Statistic Value

Total stxt (train/val/test) 16,229/1,997/2,143
Total q (train/val/test) 26,623/3,261/3,519
Unique q (train/val/test) 20,183/2,872/3,036

Total scenes (train/val/test) 518/65/67
Total objects (train/val/test) 11,723/1,550/1,652

Average stxt length 17.49
Average q length 10.49

Table 2: SQA3D dataset statistics. Figure 5: Question distribution in SQA3D

knowledge, SQA3D is the largest dataset of grounded 3D scene understanding with the human-
annotated question-answering pairs (a comparison to the counterparts can be found in Table 1).
Table 2, Figure 4, and Figure 5 illustrate the basic statistics of our dataset, including the word
cloud of situation descriptions and question distribution based on their prefixes. It can be seen that
descriptions overall meet our expectations as human activities like “sitting” and “facing” are among
the most common words. Our questions are also more diverse and balanced than our counterparts,
where those starting with “What” make up more than half of the questions and result in biased
questions (Azuma et al., 2022). More statistics like distributions over answers and length of the text
can be found in appendix.

Dataset splits and evaluation metric. We follow the practice of ScanNet and split SQA3D into
train, val, and test sets. Since we cannot access the semantic annotations in ScanNet test set, we
instead divide the ScanNet validation scenes into two subsets and use them as our val and test
sets, respectively. The statistics of these splits can be found in Table 2. Following the protocol
in VQAv2 (Goyal et al., 2017), we provide a set of 706 “top-K” answer candidates by excluding
answers that only appear very few times. Subsequently, we adopt the “exact match” as our evaluation
metric, i.e., the accuracy of answer classification in the test set. No further metric is included as we
find it sufficient enough to measure the differences among baseline models with “exact match”.

3 MODELS FOR SQA3D

Generally speaking, SQA3D can be characterized as a multi-modal reasoning problem. Inspired
by the recent advances in transformer-based (Vaswani et al., 2017) vision-language models (Lu
et al., 2019; Li et al., 2020; Alayrac et al., 2022), we investigate how could these methods ap-
proach our task. Specifically, we study a recent transformer-based question-answering system:
ScanQA (Azuma et al., 2022), which maps 3D scans and questions into answers. We make a few
adaptations to ensure its compatibility with the protocol in SQA3D. To further improve this model,
we consider including some auxiliary tasks during training (Ma et al., 2022). For other types of 3D
scene context, e.g. egocentric video clips and BEV pictures, we employ the corresponding state-of-
the-art models. Finally, we explore the potential of recently-introduced LLMs like GPT-3 (Brown
et al., 2020) and Unified QA (Khashabi et al., 2020) on solving SQA3D in a zero-shot fashion. An
overview of these models can be found in Figure 6.

3D model. We use the term 3D model to refer a modified version of the ScanQA model (Azuma
et al., 2022), depicted in the blue box of Figure 6. It includes a VoteNet (Qi et al., 2019)-based
3D perception module that extracts object-centric features, LSTM-based language encoders for
processing both questions q and situation description stxt, and some cross-attention transformer
blocks (Vaswani et al., 2017). The object-centric feature tokens attend to the language tokens of
stxt and q successively. Finally, these features will be fused and mapped to predict the answer. Op-
tionally, we can add one head to predict the location ⟨spos, srot⟩ of the agent. Since the VoteNet
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Figure 6: Potential models for SQA3D. We split the considered models into three groups: 3D model, video
/ image model, and zero-shot model. The 3D model is modified from the ScanQA model (Azuma et al.,
2022) and maps 3D scan input to the answer. While the video / image models are effectively borrowed from
canonical video QA and VQA tasks but we augment them with the additional situation input. The zero-shot
model explores the potential of large pre-trained LLMs on our tasks. But they have to work with an additional
3D caption model that converts the 3D scene into text.

module is trained from scratch, we also employ an object detection objective (not shown in the
figure).

Auxiliary task. As we mentioned before, situation understanding plays a crucial role in accom-
plishing SQA3D tasks. To encourage a better understanding of the specified situation, we introduce
two auxiliary tasks: the model is required to make predictions about the spos and srot of the situation.
We use mean-square-error (MSE) loss for these tasks. The overall loss for our problem therefore
becomes L = Lans + αLpos + βLrot, where Lans, Lpos, and Lrot depicts the losses of the main and
auxiliary tasks, α and β are balancing weights.

Video and Image-based model. The orange box in the middle of Figure 6 demonstrates the models
for video and image-based input. SQA3D largely resembles a video question answering or visual
question answering problem when choosing to represent the 3D scene context S as egocentric video
clips or BEV pictures. However, SQA3D also requires the model to take both question q and the
newly added situation description stxt as input. We, therefore, follow the practice in the task of
context-based QA (Rajpurkar et al., 2018) and prepend stxt to the question as a context. For the
model, we use the state-of-the-art video QA system ClipBERT (Lei et al., 2021) and VQA system
MCAN (Yu et al., 2019). We adopt most of their default hyper-parameters and the details can be
found in appendix.

Zero-shot model. We explore to which extent the powerful LLMs like GPT-3 (Brown et al., 2020)
and Unified QA (Khashabi et al., 2020) could tackle our tasks. Following prior practices that apply
GPT-3 to VQA (Changpinyo et al., 2022; Gao et al., 2022), we propose to convert the 3D scene into
text using an emerging technique called 3D captioning (Chen et al., 2021). We provide the caption,
stxt, and q as part of the prompt and ask these models to complete the answer. For GPT-3, we further
found providing few-shot examples in the prompt helpful with much better results. Minor post-
processing is also needed to ensure answer quality. We provide more details on prompt engineering
in the appendix.

4 EXPERIMENTS

4.1 SETUP

We benchmark the models introduced in Section 3 to evaluate their performances on SQA3D. As
mentioned before, we examine three types of scene context S: 3D scan (point cloud), egocentric
video, and BEV picture. Both the 3D scan and egocentric video for each scene are provided by
ScanNet (Dai et al., 2017). However, we down-sample the video to allow more efficient computa-
tion per the requirement of the ClipBERT model (Lei et al., 2021). The BEV pictures are rendered
by placing a top-down camera on top of the scan of each 3D scene. We also conduct additional
experiments that investigate factors that could contribute to the results, e.g., situation and auxil-
iary tasks. In our early experiments, we found that the 3D model overall performs better than the
video or image-based models. Therefore we only conduct these additional experiments with the
variants of our 3D model due to the limit of computational resources. We use the official imple-
mentation of ScanQA, ClipBERT, and MCAN and include our modifications for SQA3D. For the

6



Published as a conference paper at ICLR 2023

S Format test set Avg.What Is How Can Which Others

Blind test - SQ→A 26.75 63.34 43.44 69.53 37.89 43.41 43.65

ScanQA (w/o stxt) 3D scan VQ→A 28.58 65.03 47.31 66.27 43.87 42.88 45.27
ScanQA 3D scan VSQ→A 31.64 63.80 46.02 69.53 43.87 45.34 46.58
ScanQA + aux. task 3D scan VSQ→AL 33.48 66.10 42.37 69.53 43.02 46.40 47.20

MCAN BEV VSQ→A 28.86 59.66 44.09 68.34 40.74 40.46 43.42
ClipBERT Ego. video VSQ→A 30.24 60.12 38.71 63.31 42.45 42.71 43.31

Unified QALarge ScanRefer VSQ→A 33.01 50.43 31.91 56.51 45.17 41.11 41.00
Unified QALarge ReferIt3D VSQ→A 27.58 47.99 34.05 59.47 40.91 39.77 38.71
GPT-3 ScanRefer VSQ→A 39.67 45.99 40.47 45.56 36.08 38.42 41.00
GPT-3 ReferIt3D VSQ→A 28.90 46.42 28.05 40.24 30.11 36.07 34.57

Human (amateur) 3D scan VSQ→A 88.53 93.84 88.44 95.27 87.22 88.57 90.06

Table 3: Quantitative results on the SQA3D benchmark. Results are presented in accuracy (%) on different
types of questions. In the “Format” column: V = 3D visual input S; S = situation description stxt; Q = question
q; A = answer a; L = location ⟨spos, srot⟩. In ScanQA, aux. task indicates the use of both Lpos and Lrot as
additional losses. We use the Large variant as Unified QA (Khashabi et al., 2020) as it works better.

zero-shot models, we extract 3D scene captions from two sources: ScanRefer (Chen et al., 2020)
and ReferIt3D (Achlioptas et al., 2020). Considering the limit on the length of the input prompt,
these 3D captions are also down-sampled. The Unified QA model weights are obtained from its
Huggingface official repo. All the models are tuned using the validation set and we only report
results on the test set. More details on model implementation can be found in appendix.

4.2 QUANTITATIVE RESULTS

We provide the quantitative results of the considered models (detailed in Section 3) on our SQA3D
benchmark in Table 3. The findings are summarized below:

Question types. In Table 3, we demonstrate accuracy on six types of questions based on their
prefixes. Most models tend to perform better on the “Is” and “Can” questions while delivering
worse results on “What” questions, likely due to a smaller number of answer candidates – most
questions with binary answers start with “Is” and “Can”, offering a better chance for the random
guess. Moreover, we observe the hugest gap between the blind test (model w/o 3D scene context
input) and our best model on the “What” and “Which” categories, suggesting the need for more
visual information for these two types of questions. This also partially echoes the finding reported
in Lei et al. (2018).

Situation understanding and reasoning. At the heart of SQA3D benchmark is the requirement
of situation understanding and reasoning. As we mentioned in Section 2.1, the model will be more
vulnerable to wrong answer predictions if ignoring the situation that the question depends on (e.g.
“What is in front of me” could have completely different answers under different situations). In Ta-
ble 3, removing situation description stxt from the input leads to worse results, while adding the
auxiliary situation prediction tasks boosts the overall performance, especially on the challenging
“What” questions. The only exception is “How” questions, where a majority of them are about
counting. We hypothesize that most objects in each ScanNet scene only have a relatively small
number of instances, and the number could also correlate to the object category. Therefore, guess-
ing/memorization based on the question only could offer better results than models with the situation
as input if the situation understanding & reasoning are still not perfect yet. Additionally, we also
provide an inspection of the relation between situation understanding and QA using attention visu-
alization in Section 4.3.

Representations of 3D scenes. Indeed, SQA3D does not limit the input to be 3D scan only, as
we also offer options of egocentric videos and BEV pictures. Compared to models with the 3D
scan as input, the tested models with other 3D representations (i.e., MCAN and ClipBERT) deliver
much worse results, implying that the 3D scan so far could still be a better representation for the
3D scene when the reasoning models are probed with questions that require a holistic understanding
of the scene. On the other hand, MCAN and ClipBERT are general-purpose QA systems, while
ScanQA is designed for 3D-language reasoning tasks. The generalist-specialty trade-off could also
partially account for the gap. Finally, the poor results of BEV and egocentric videos based models
compared to the blind test could also be due to the additional “vision-bias” when the visual input is
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𝒔txt: I am picking up my backpack
with a chair to my left within reach.
𝒒: How many chairs are behind me?

𝒔txt: I am sitting on the rightmost 
side of my couch, and there is an end 
table to my right.
𝒒: The coffee table that is furthest 
from me is surrounded by what? 

𝒔txt: I am entering the room. 
𝒒: What is the color of the backpack
on my 10 o’clock chair?
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𝒂: Two✅ 𝒂: Couch ✅ 𝒂: Red ✅

𝒂: Front ❌

𝒂: Wall ✅

𝒂: Wall ✅

𝒔txt: I am working at the counter
with cabinets over my head and the 
wall on my left is within reach.
𝒒: If I walked backwards, what 
would I hit behind me?

Figure 7: Qualitative results. We show the predicted answer and bbox with highest attention for the variants of
ScanQA (Azuma et al., 2022) models. We anticipate the bbox to indicate the object that situation description stxt

or question q refers to. We observe that better situation understanding (via comprehension on stxt or auxiliary
tasks) could result in more reasonable attention over objects, which positively correlates to more robust answer
prediction.

provided (Antol et al., 2015). Note that the vision-bias can be mitigated with better visual represen-
tations (Wen et al., 2021), implying that ScanQA, which seems to suffer less from the vision-bias
than the counterparts using BEV and egocentric videos, is fueled by better visual representations in
terms of combating the dataset bias.

Zero-shot vs. training from scratch. The success of pre-trained LLMs like GPT-3 on myriads
of challenging reasoning tasks (Wei et al., 2022b;a) suggests that these models could possibly also
understand embodied 3D scenes with language-only input (Landau & Jackendoff, 1993). However,
SQA3D imposes a grand challenge to these models. The powerful Unified QA (Large variant) and
GPT-3 both fail to deliver reasonable results on our tasks. Further, we hypothesize the bottleneck
could also be on the 3D captions, as the results verify the consistent impact on model performances
brought by a different source of captions (ScanRefer→ReferIt3D). However, we still believe these
models have great potential. For example, one zero-shot model (GPT-3 + ScanRefer) do pretty well
on the challenging “What” questions (39.67%), even better than the best ScanQA variant.

Human vs. machine. Finally, all the machine learning models largely fall behind amateur human
participants (47.2% of ScanQA + aux. task vs. 90.06%). Notably, we only offer a limited number
of examples for the testers before sending them the SQA3D problems. Our participants promptly
master how to interact with the 3D scene, understand the situation from the textual description,
and answer the challenging questions. The human performance also shows no significant bias for
different question types.

4.3 QUALITATIVE RESULTS

Finally, we offer some qualitative results of the variants of our 3D model in Figure 7. We primarily
focus on visualizing both the answer predictions and the transformer attention over the object-centric
feature tokens (bounding boxes) generated by the VoteNet (Qi et al., 2019) backbone. We highlight
the most-attended bounding box among all the predictions by the transformer-based model, in the
hope of a better understanding of how these models perceive the 3D scene to comprehend the sit-
uations and answer the questions. In Figure 7, the correct predictions are always associated with
attention over relevant objects in the situation description stxt and questions. Moreover, in case there
are multiple instances of the same object category, it is also crucial to identify the correct instance.
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For example, only ScanQA + aux. task makes the correct prediction for the first question and also
attends to the right chair behind , while ScanQA focuses on a wrong instance. These results con-
firm our findings in Section 4.2 about the critical role of situation understanding. We also provide
some failure modes in appendix.

4.4 ADDITIONAL TASK FOR LOCALIZATION

As illustrated in Figure 1, the agent could optionally predict the current location based off the sit-
uation description stxtand the current 3D scene context S. We therefore provide some additional
metrics to help evaluate these predictions. Specifically, the agent needs to predict both the current
position sposin 3D coordinate ⟨x, y, z⟩ (unit is meter) and orientation in quaternion ⟨x, y, z, w⟩. Then
these predictions will be evaluated separately using the following metrics:

• Acc@0.5m: If the predicted position is within 0.5 meter range to the ground truth position, the
prediction will be counted as correct. We then report #correctly predicted ground truth

#all ground truth .

• Acc@1.0m: Similar to Acc@0.5m but the range limit is 1.0 meter instead.

• Acc@15°: If the prediction orientation is within a 15° range to the ground truth orientation, the
prediction will be counted as correct.

• Acc@30°: Similar to Acc@15° but the range limit is 30° instead.

Note that, for position prediction, we only consider the predicted x, y and for orientation predic-
tion, only the rotation along z-axis counts. We report the result of random prediction below as an
reference.

Acc@0.5m Acc@1.0m Acc@15° Acc@30°

Random 14.60 34.21 22.39 42.28

Table 4: Random predictions evaluated on the localization task.

5 RELATED WORK

Embodied AI. The study of embodied AI (Brooks, 1990) emerges from the hypothesis of “ongoing
physical interaction with the environment as the primary source of constraint on the design of intel-
ligent systems”. To this end, researchers have proposed a myriad of AI tasks to investigate whether
intelligence will emerge by acting in virtual or photo-realistic environments. Notable tasks includ-
ing robotic navigation (Das et al., 2018; Anderson et al., 2018; Savva et al., 2019; Chen et al., 2019;
Wijmans et al., 2019b; Qi et al., 2020; Deitke et al., 2022) and vision-based manipulation (Kolve
et al., 2017; Puig et al., 2018; Xie et al., 2019; Shridhar et al., 2020a;b; 2022). These tasks are
made more challenging as instructions or natural-dialogues are further employed as conditions. So-
phisticated models have also been developed to tackle these challenges. Earlier endeavors usually
comprise multi-modal fusion (Tenenbaum & Freeman, 1996; Perez et al., 2018) and are trained from
scratch (Wang et al., 2018; Fried et al., 2018; Wang et al., 2019), while recent efforts would employ
pre-trained models (Pashevich et al., 2021; Hong et al., 2021a; Suglia et al., 2021). However, the
agents still suffer from poor generalization to novel and more complex testing tasks (Shridhar et al.,
2020a) compared to results on training tasks. More detailed inspection has still yet to be conducted
and it also motivates our SQA3D dataset, which investigates one crucial capability that the current
embodied agents might need to improve: embodied scene understanding.

Grounded 3D understanding. Visual grounding has been viewed as a key to connecting human
knowledge, which is presumably encoded in our language, to the visual world, so as enable the in-
telligent agent to better understand and act in the real environment. It is natural to extend this ability
to 3D data as it offers more immersive representations of the world. Earlier work has examined
word-level grounding with detection and segmentation tasks on 3D data (Gupta et al., 2013; Song
& Xiao, 2014; Dai et al., 2017; Chang et al., 2017). Recent research starts to cover sentence-level
grounding with complex semantics (Chen et al., 2020; Achlioptas et al., 2020; Chen et al., 2021).
More recently, new benchmarks introduce complex visual reasoning to 3D data (Azuma et al., 2022;
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Ye et al., 2021; Yan et al., 2021). However, these tasks mostly assume a passive, third-person’s per-
spective, while our SQA3D requires problem-solving with an egocentric viewpoint. This introduces
both challenges and chances for tasks that need a first-person’s view, e.g. embodied AI.

Multi-modal question answering. Building generalist question answering (QA) systems has long
been a goal for AI. Along with the progress in multi-modal machine learning, VQA (Antol et al.,
2015; Zhu et al., 2016) pioneers the efforts of facilitating the development of more human-like,
multi-modal QA systems. It has been extended with more types of knowledge, e.g. common
sense (Zellers et al., 2019) and factual knowledge (Marino et al., 2019). Recent research has also
introduced QA tasks on video (Lei et al., 2018; Jia et al., 2020; 2022; Grunde-McLaughlin et al.,
2021; Wu et al., 2021; Datta et al., 2022), and 3D data (Ye et al., 2021; Azuma et al., 2022; Yan
et al., 2021). We propose the SQA3D benchmark also in hope of facilitating multi-modal QA sys-
tems with the ability of embodied scene understanding. Notably, models for SQA3D could choose
their input from a 3D scan, egocentric video, or BEV picture, which makes our dataset compatible
with a wide spectrum of existing QA systems.

6 CONCLUSION

We’ve introduced SQA3D, a benchmark that investigates the capability of embodied scene under-
standing by combining the best of situation understanding and situated reasoning. We carefully
curate our dataset to include diverse situations and interesting questions while preserving the rela-
tively large scale (20.4k situation descriptions and 33.4k questions). Our questions probe a wide
spectrum of knowledge and reasoning abilities of embodied agents, notably navigation, common
sense, and multi-hop reasoning. We examine many state-of-the-art multi-modal reasoning systems
but the gap between the best ML model and human performances so far is still significant. Our find-
ings suggest the crucial role of proper 3D representations and better situation understanding. With
SQA3D, we hope of fostering research efforts in developing better embodied scene understanding
methods and ultimately facilitate the emergence of more intelligent embodied agents.
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