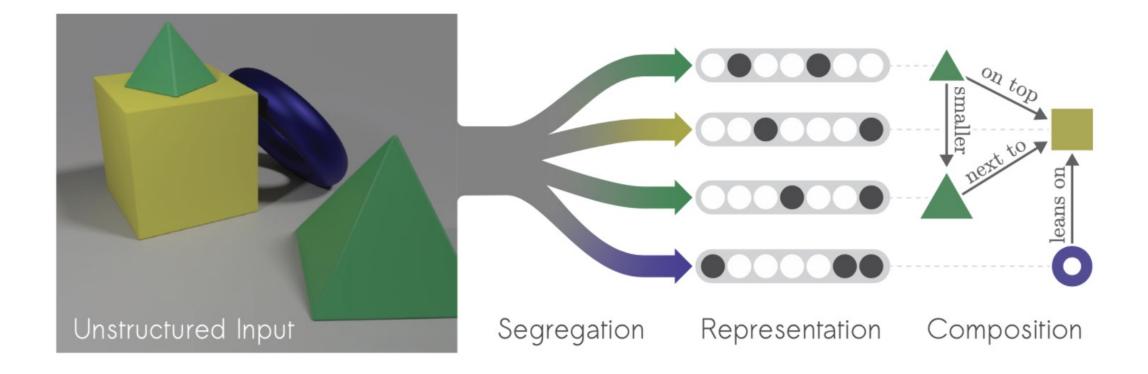
RelViT: Concept-guided Vision Transformer for Visual Relational Reasoning

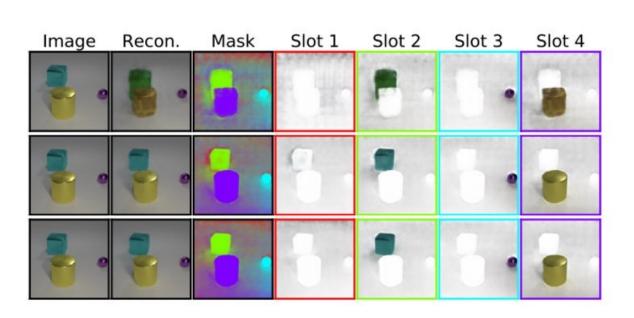
Xiaojian Ma, Weili Nie, Zhiding Yu, Huaizu Jiang, Chaowei Xiao, Yuke Zhu, Song-Chun Zhu, Anima, Anandkumar

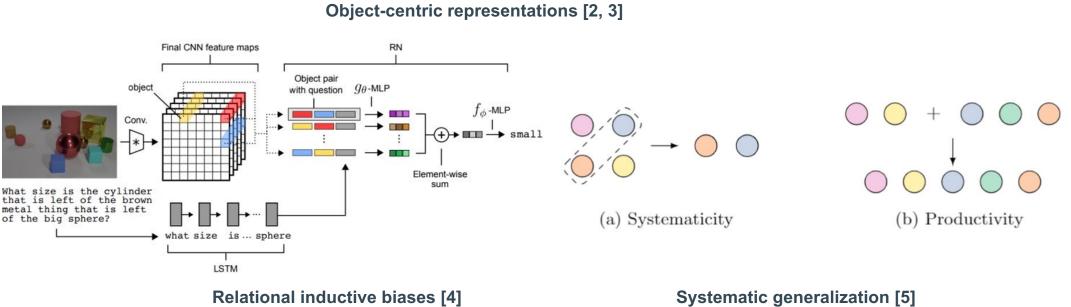
What makes visual reasoning so challenging?

From representations to reasoning in human and AI [1]

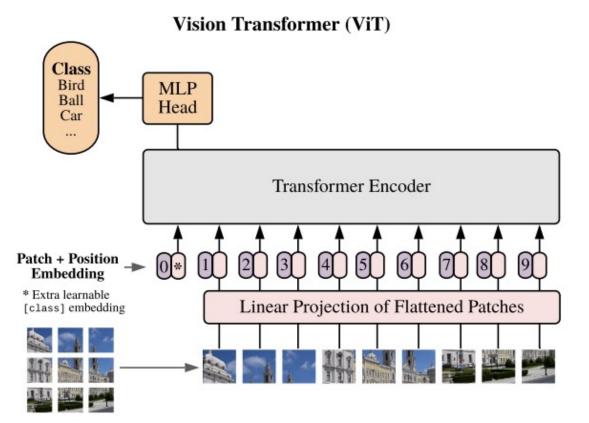


Ingredients for human-level visual reasoning [2,3,4,5]

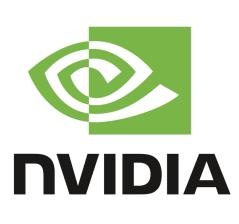




ViTs (partially) offer these ingredients [6]



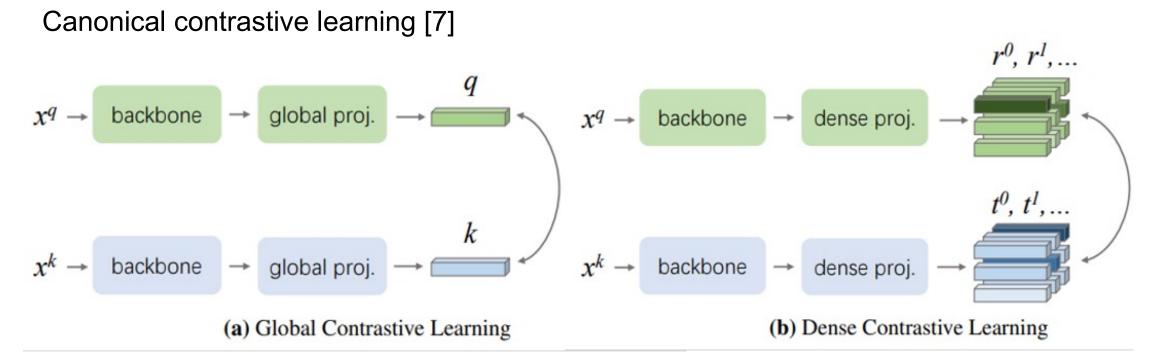
- **Image as patches**: image patches can be viewed as object candidates.
- Self-attention: Multi-head self attention (MHSA) in ViT effectively captures the pair-wise relations among input entities.



Q1: To which extent ViT helps with visual reasoning? -- see experiments Q2: Can we make it better? -- contrastive learning seems helpful, let's give it a try in the

regular learning pipeline.

From contrastive learning to concept-guided contrastive learning



- The global CL can help with **relational meaning** and **reasoning**.
- The local CL can help with **object-centric representation** (via unsupervised correspondence learning).
- However, simply contrasting **two views** of the **same** picture could be inefficient, especially when we do know the semantic label of them.

Concept-guided contrastive learning

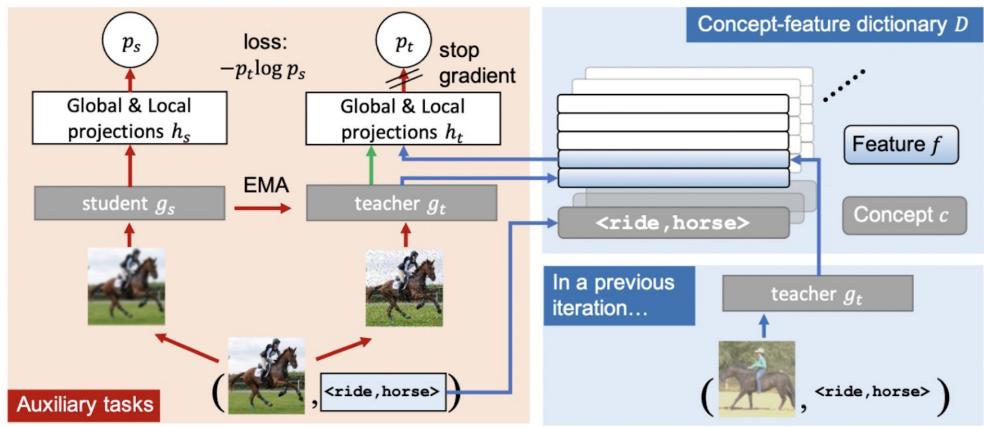


Figure 1: An overview of our method. Red+Green: the learning pipeline of DINO (Caron et al., 2021) and EsViT (Li et al., 2021); Red+Blue: our pipeline.

- We now contrast two (augmented) images with the **same semantics** instead.
- Each image is assumed to be paired with a **concept code** (can be parsed from the data, ex. questions in VQA)
- **Concept-feature dictionary** is introduced for retrieving images with the same concept on-the-fly.
- No significant overhead, **easy** to work with many training pipelines.

Experiments

Method	Ext. superv.	Backbone	Orig.	Syster Full cls.	natic-easy Unseen cls.		natic-hard Unseen cls.
Mallya & Lazebnik (2016)*		ResNet-101	33.8	-	_	-	-
Girdhar & Ramanan (2017)*	bbox	ResNet-101	34.6	-	-	-	-
Fang et al. (2018)*	pose	ResNet-101	39.9	-	=	-	-
Hou et al. (2020) [†]		ResNet-101	28.57	26.65	11.94	21.76	10.58
ViT-only		PVTv2-b2	35.48	31.06	11.14	19.03	18.85
EsViT (2021)		PVTv2-b2	38.23	35.15	11.53	22.55	21.84
RelViT (Ours)		PVTv2-b2	39.4	36.99	12.26	22.75	22.66
RelViT + EsViT (Ours)		PVTv2-b2	40.12	37.21	12.51	23.06	22.89

GQA

					0.5				
Method	Bbox feat.*	Backbone	Orig.	Sys.	- 0.4		− T	raining	
BottomUp (2018)	1	ResNet-101	53.21	-	- 0.4		→T	esting	
MAC (2018b)	1	ResNet-101	54.06	-	0.3 E	_			
MCAN-Small (20	19) 🗸	ResNet-101	58.35	36.21					
MCAN-Small (20	19 ⁾	ResNet-101	51.1	30.12	0.2				
ViT-only		PVTv2-b2	56.62	31.39	0.1				
EsViT (2021)		PVTv2-b2	56.95	31.76					
RelViT (Ours)		PVTv2-b2	57.87	35.48	0.0	2	3 4 5	6 7 8	
				-	#Resoning hops				
GQ.	GQA overall accuracy		MCAN-Small		RelViT		elViT	RelViT	
		(w/	bbox)	(F	PVTv2-b2)	(PV	Tv2-b3)	(Swin-base)	
	original systematic		58.35 36.21		57.87	61.41 36.25		65.54 37.51	
					35.48				

Takeaway messages

- Three ingredients for human-level visual reasoning: objectcentric representations, relational inductive bias and systematic generalization.
- Vision transformer for human-level visual reasoning: it help eliminate the need for object detection and complex reasoning modules.
- **Concept-guided contrastive learning** can further boost ViT's potentials on solving systematic generalization.

References

- [1] "On the Binding Problem in Artificial Neural Networks" In: arXiv
- [2] "Object-Centric Learning with Slot Attention" In: NeurIPS
- [3] "Mask R-CNN" In: ICCV
- [4] "A simple neural network module for relational reasoning" In: NeurIPS
- [5] "Compositionality decomposed: how do neural networks generalise?" In: JAIR
- [6] "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" In: ICLR
- [7] "Dense Contrastive Learning for Self-Supervised Visual Pre-Training" In: CVPR

Code