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ABSTRACT

Reasoning about visual relationships is central to how humans interpret the visual
world. This task remains challenging for current deep learning algorithms since
it requires addressing three key technical problems jointly: 1) identifying object
entities and their properties, 2) inferring semantic relations between pairs of en-
tities, and 3) generalizing to novel object-relation combinations, i.e. systematic
generalization. In this work, we use vision transformers (ViTs) as our base model
for visual reasoning and make better use of concepts defined as object entities and
their relations to improve the reasoning ability of ViTs. Specifically, we intro-
duce a novel concept-feature dictionary to allow flexible image feature retrieval
at training time with concept keys. This dictionary enables two new concept-
guided auxiliary tasks: 1) a global task for promoting relational reasoning, and
2) a local task for facilitating semantic object-centric correspondence learning.
To examine the systematic generalization of visual reasoning models, we intro-
duce systematic splits for the standard HICO and GQA benchmarks. We show the
resulting model, Concept-guided Vision Transformer (or RelViT for short) signif-
icantly outperforms prior approaches on HICO and GQA by 16% and 13% in the
original split, and by 43% and 18% in the systematic split. Our ablation analyses
also reveal our model’s compatibility with multiple ViT variants and robustness to
hyper-parameters. Code is available.

1 INTRODUCTION

Deep neural networks have achieved great success in visual recognition. However, their ability for
visual relational reasoning, i.e. reasoning with entities and their relationships in a visual scene,
still falls short of human-level performances, especially in real-world domains. The challenges of
common visual relational reasoning tasks, e.g. HICO and GQA benchmarks (Chao et al., 2015;
Hudson & Manning, 2019) are manifested in three aspects: 1) object-centric learning to identify
objects (including humans) as well as their visual properties; 2) relational reasoning to infer all
pairwise relationships between the object entities; and 3) systematic generalization to reason with
visual entities and relations on novel object-relation combinations and extrapolate to longer rea-
soning hops (Bahdanau et al., 2018; Hupkes et al., 2020). While existing models have leveraged
pre-trained object detectors (Ren et al., 2015; Jiang et al., 2020) and/or explicit symbolic reasoning
methods (Yi et al., 2018) to tackle these challenges, they leave ample space for improvement.

More recently, vision transformers (ViTs) have become the new paradigm for visual recognition
and have made great strides in a broad range of visual recognition tasks (Dosovitskiy et al., 2020;
Wang et al., 2021a; Liu et al., 2021). Several properties of ViT make it a compelling model choice
for visual relational reasoning. First, the self-attention mechanism in ViT offers a strong relational
inductive bias, explicitly modeling the relations between input entities. Second, the design of image
as patches facilitates the learning of object-centric representations, as evidenced by recent works,
e.g. DINO and EsViT (Caron et al., 2021; Li et al., 2021), that demonstrate ViTs trained with
self-supervised learning (SSL) capture objects in the image without label annotations.
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Figure 1: An overview of our method. Red+Green: the learning pipeline of DINO (Caron et al.,
2021) and EsViT (Li et al., 2021); Red+Blue: our pipeline. We introduce a concept-feature dictio-
nary, where the key is a concept c and its value is a queue of image features f with the same concept,
to allow flexible feature retrieval with the concept keys. With the proposed dictionary, we further
develop our concept-guided global and local tasks. EMA denotes the exponential moving average.

To investigate the efficacy of the ViT backbone for visual relational reasoning, in particular on
systematic generalization, we introduce new systematic splits to canonical benchmarks and compare
the ViT backbone with the CNN backbone. Results on GQA show that switching to ViTs in MCAN
model (Yu et al., 2019) brings an immediate 11% gain in accuracy. However, the performance gap
between the original GQA testing split and the new systematic split remains considerable (15%
in accuracy) for both backbones. It suggests that generic ViTs still need to be improved to tackle
the reasoning task, especially on systematic generalization. Recent works have shown that neural
networks can learn representations with better generalization, by learning certain auxiliary tasks
of predicting human-specified concepts (Hill et al., 2020; Koh et al., 2020). A natural question
emerges: can we exploit these concepts to improve the reasoning ability of ViTs?

Our approach is to make better use of concepts (e.g. the labels in the original training dataset) in the
ViT training for better relational reasoning. To this end, we first introduce a novel concept-feature
dictionary, where each key is a concept and its value is a queue of image features with the same
concept, as shown in Figure 1. It allows dynamic and flexible training-time image feature retrieval
during training. Based on this dictionary, we then augment the canonical ViT training pipeline with
two auxiliary tasks: First, to facilitate high-level reasoning about relationships, we design a global
task that helps cluster images with the same concept together to produce semantically consistent
relational representations. Second, to learn better object-centric representations, we develop a local
task that guides the model to discover object-centric semantic correspondence across images (Liu
et al., 2010). Thanks to the plug-and-play feature of our concept-feature dictionary, our auxiliary
tasks can be easily incorporated into existing ViT training pipelines without additional input pre-
processing. We term the resulting model concept-guided vision transformer (or RelViT for short).

Figure 2: Results on HICO. Our
method improves the best baseline
by 16%, 43%, and 7% on the orig-
inal non-systematic and two new
systematic splits. Sys.: systematic.

We evaluate our method on two standard visual relational rea-
soning benchmarks: HICO and GQA. Beyond the original in-
dependent and identically distributed (I.I.D.) training-testing
split, we introduce new systematic splits for each dataset to
examine the ability of systematic generalization, i.e., recogniz-
ing novel object-relation combinations. Our results show that
RelViT significantly outperforms previous approaches. On
HICO, it improves the best baseline by 16%, 43%, and 7%
on the original non-systematic and two new systematic splits,
respectively, as shown in Figure 2. On GQA, it further closes
the gap of overall accuracy between models using visual back-
bone feature only and models using additional bounding box
features (obtained from pre-trained object detectors) by 13%
and 18% on the two splits. We also show that our method
is compatible with various ViT variants and robust to hyper-
parameters. Finally, our qualitative inspection indicates that
RelViT does improve ViTs on learning relational and object-centric representations.
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Our main contributions are summarized as follows:

• We propose RelViT, by incorporating visual relational concepts to the ViT training with the newly-
introduced concept-guided global and local auxiliary tasks, where a concept-feature dictionary is
proposed to enable dynamic and flexible image feature retrieval with the concept keys.

• In extensive experiments on the original non-systematic and new systematic split of the HICO and
GQA datasets, we demonstrate the advantages of RelViT over various strong baselines for visual
relational reasoning.

• We perform ablation studies on RelViT to show the contributions of its key components, its com-
patibility to various ViT architectures, and its robustness to hyper-parameters. We provide quali-
tative results to confirm our improved learning of relational and object-centric representations.

2 METHODOLOGY

2.1 BACKGROUND

Vision transformers. Here we briefly review the architecture of multi-staged ViTs (Dosovitskiy
et al., 2020). Given an image I ∈ RH×W×C , a ViT model g first tokenizes the input into N image
tokens (patches) with a resolution of (T, T ): tokenize(I) = [t1, · · · , tN ], ti ∈ RT 2×C , N =
HW/T 2, where (H,W ) and C denotes the original resolution and number of channel of the image,
respectively. Then in each stage, a patch embedding and a multi-head self attention (MHSA) module
is applied to these tokens to produce input for the next stage. The final output of ViT g(I) is a
sequence of tokens [z1, · · · , zN ] that correspond to the aforementioned input tokens. For global
prediction tasks, e.g. image categorization, a summary of the input image can be obtained by either
inserting an extra [CLS] token to the input sequence of image tokens or performing an extra pooling
operation over the output tokens (Zhai et al., 2021).

Self-supervised learning with DINO and EsViT. Our method is developed upon the recently pro-
posed self-supervised learning (SSL) approach self-distillation with no labels (DINO) (Caron et al.,
2021) and its follow-up EsViT (Li et al., 2021). As shown in Figure 1, their main idea is to en-
courage the output consistency between a teacher gt and a student network gs, parameterized by
θt and θs, respectively. Given an input image I, both networks map it to a probability distribution
Pt(I) = ht(gt(I)) and Ps(I) = hs(gs(I)) via an extra projection head h(·). The teacher and student
network will be updated alternatively by following these two rules: (1) For the student network:
θs ← argminθs LGlobal, where LGlobal = −Pt(I) logPs(I); (2) For the teacher network, θt is up-
dated using an exponential moving average (EMA) on θs: θt ← λθt + (1− λ)θs, where λ controls
the updating momentum. In practice, multiple views of the input image I will be generated via data
augmentation and the teacher and student networks will receive different views, preventing the task
from being trivialized. EsViT further extends the image-level loss LGlobal to patch-level by applying
dense SSL (Wang et al., 2021c) for learning correspondence between the different views, enhancing
the performance on dense prediction. Readers are encouraged to refer to Caron et al. (2021) and Li
et al. (2021) for more details about these two works.

2.2 RELVIT
RelViT is a concept-guided ViT that makes better use of the concepts in the ViT training for the
improved relational reasoning. In this section, we first introduce a concept-feature dictionary to store
and retrieve image features with their concept keys. We then augment the canonical ViT training
pipeline with two auxiliary tasks: a global level task and a local level task, both are concept-guided
by resorting to the concept-feature dictionary. Intuitively, the global task help cluster images with
the same concept together to produce semantically consistent relational features, while the local task
guides the model to discover object-centric semantic correspondence across images.

Concept-feature dictionary. We assume the total number of concepts is M , and the set
of all concepts C = {c1, · · · , cM}. A concept-feature dictionary is denoted by D =
{(c1, Q1), · · · , (cM , QM )}, where each concept ci is associated with a queue Qi of image fea-
tures. During training, each image I may come with multiple concepts, which we denote by CI ⊂ C.
For instance, there may exist several human-object interactions in an image from the HICO dataset,
each of which may correspond to a concept. As shown in Figure 1, whenever a new image-concept
pair (I, CI) comes, we uniformly draw a concept code c from CI, pick up the queue Q from the
dictionary that corresponds to c, and then retrieve the image feature f from Q. Meanwhile, we pass
the input image I to the teacher network gt to get the new image feature f ′ = gt(I), and enqueue
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it to Q. Note that if Q is full already, we first need to dequeue the oldest image feature from Q.
During training, we use the retrieved image feature f for the two auxiliary tasks below, rather than
the input image feature f ′.

Furthermore, the sampling strategy, i.e. how to retrieve image feature f from Q, plays an important
role in the overall performance of our method. We consider the following two sampling strategies:

• Uniform sampling. Each image feature is drawn with equal probability from the queue, i.e.
suppose we have N features in the queue, then the probability of each feature being sampled is
1/N . This tactic encourages the diversity of the retrieved image features, benefiting the overall
performance. However, some older features in the queue may largely fall behind the current
model if the teacher network gt is updated quickly, eliciting unstable training.

• “Most-recent” sampling. The sampling probability mass is allocated based on the freshness of
image features, and the most recent feature has the highest chance to be retrieved. Specifically,
suppose we have N features in the queue Q (|Q| >= N ). Then for the i-th newest feature f ,
we define its weight wi = N − i + 1. Finally, the probability of the i-th newest feature being
sampled is wi/

∑N
j=1 wj . This tactic ensures we retrieve more up-to-date features and thereby

stabilizes the learning. But it may hurt the overall performance due to a lack of feature diversity,
as the chance of older features being sampled is small.

Note that the feature queue is empty at the beginning of training. In this case, we simply use the input
image feature f ′ for the auxiliary tasks, and also enqueue it to Q that corresponds to the concept of
the input image. As we can show in the next, now our proposed global and local tasks reduce to
DINO (Caron et al., 2021) and EsViT (Li et al., 2021), respectively.

Concept-guided global task. Suppose we have two views {I(1), I(2)} of an image I, the main idea
of our concept-guided global task is to replace I(1) in the DINO loss (Caron et al., 2021) with the
image feature f sampled from the concept-feature dictionary, which becomes

LGlobal = −ht(f) log hs(gs(I(2))), (1)
where ht and hs are the projection head of the teacher and student network, respectively, and gs
is the student network. Intuitively, minimizing the global loss is equivalent to encouraging the
similarity of any two different image features with the same concept. Hence, it can help produce
more semantically consistent relational representations, in particular when the concepts stored in the
concept-feature dictionary are themselves relational.

Similar inter-class representation learning techniques have been explored before (Wang et al., 2017;
Caron et al., 2018). However, these approaches require a rather complex pre-processing stage,
e.g. the images have to be split in terms of the concept before training, making them not directly
applicable to existing training pipelines. Rather, with our proposed concept-feature dictionary that
dynamically saves & retrieves image features from the running storage, our concept-guided global
task becomes a plug-n-play task to existing training pipelines.

Concept-guided local task. As we mentioned earlier, our concept-guided local task aims at facilitat-
ing object-centric learning, by the means of correspondence learning (Liu et al., 2010; Wang et al.,
2019). Recent studies have unveiled the possibility of learning correspondence with SSL (Wang
et al., 2021c; Li et al., 2021). However, only low-level correspondence between two augmented
(e.g. rotated) views of an image can be discovered, while the semantic information of objects is
missing. To remedy this, we bring concepts to these methods, endowing them the capability of
learning semantic correspondence from images.

Specifically, suppose we have two views {I(1), I(2)} of an image I, and we also tokenize the image
feature into a sequence of N local image tokens. Then at the output of ViT, we obtain gt(I(1)) =

[z
(1)
1 , · · · , z(1)N ] and gs(I(2)) = [z

(2)
1 , · · · , z(2)N ], where z denotes the local feature. Prior work, such

as EsViT (Li et al., 2021), relies on the local features gt(I(1)) and gt(I(2)) for the local task. Instead,
we replace gt(I(1)) with the image feature f retrieved from the concept-feature dictionary using the
concept of the image I. We then split f into multiple local features, i.e. f = [z

(f)
1 , · · · , z(f)N ] and

our concept-guided local loss becomes

LLocal = −
1

N

N∑
i=1

ht(z
(f)
j? ) log hs(z

(2)
i ), j? = argmax

j
CosineDistance(z

(f)
j , z

(2)
i ), (2)
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where ht(·), hs(·) are the projection heads that map local features to probability distributions1. Intu-
itively, it greedily matches the output between two local regions that have minimal feature distance
– bootstrapping the object-level semantic correspondence among images with the same concept.

Overall loss. By combining the global and local tasks, we add an auxiliary task loss Laux to the
main loss Lmain (e.g. cross-entropy loss of the reasoning task). The eventual objective is

L = Lmain + αLaux, Laux = LGlobal + LLocal, (3)

where a trade-off weight α is added for better flexibility. As we mentioned above, our method will
reduce to EsViT, a baseline without concept-guided auxiliary tasks, when we use the current input
features gt(I(1)) instead of f retrieved from our dictionary for computing LGlobal and LLocal.

3 EXPERIMENTS

We conduct experiments on two challenging visual relational reasoning datasets: HICO (Chao et al.,
2015) and GQA (Hudson & Manning, 2019). Besides their original non-systematic split, we intro-
duce the systematic splits of each dataset to evaluate the systematic generalization of our method.
First, we compare our method against various strong baselines (Mallya & Lazebnik, 2016; Girdhar
& Ramanan, 2017; Hudson & Manning, 2018a) on visual relational reasoning, as well as state-
of-the-art ViTs. Second, we perform the ablation analysis to examine the key components of our
method: ViT backbones, concept-feature dictionaries, and auxiliary tasks. Finally, we provide qual-
itative results to justify the emerging image clustering in terms of concepts and the learned semantic
correspondence. Please see more details of all the evaluated tasks in the supplementary material.

3.1 MAIN RESULTS I: HUMAN-OBJECT INTERACTION RECOGNITION

Overview. HICO (Chao et al., 2015) features the human-object interaction (HOI) recognition, i.e.
predicting all the possible HOI categories of the input image. It contains 600 HOI categories with
117 unique actions and 80 object classes. The training set includes 38116 images and the test set
includes 9658 images. For a fair comparison, we follow the standard practice and mainly focus
on those previous methods that do not require extra supervision (Fang et al., 2018) or data (Li
et al., 2020b; 2019b; Jin et al., 2021). By default, we choose PVTv2-b2 (Wang et al., 2021b) as
the ViT backbone. Regarding the concept-feature dictionary, we use the “most-recent” sampling
and a queue length |Q| of 10. The trade-off weight α in the overall loss is fixed to 0.1. Other
hyper-parameters are inherited from DINO (Caron et al., 2021).

Systematic split. The systematic generalization in HICO has been studied before under the name
“zero-shot HOI recognition” (Shen et al., 2018). The main idea is to remove some HOI categories
from the training set while ensuring all the single actions and objects can still be kept in the re-
maining HOI categories. We thereby reuse the systematic splits offered by Hou et al. (2020). There
are two splits: systematic-easy, where only the rare HOI classes are removed from the training
set; systematic-hard, where only the non-rare HOI classes are removed besides the rare ones. The
systematic-hard split contains much fewer training instances and thereby is more challenging.

Concepts. In HICO, we simply use the 600 HOI categories as our default concepts. We also report
results with other concepts (e.g. actions, objects) in the ablation study.

Results. In Table 1, we compare our method with several counterparts. The results read that even a
simple model with PVTv2-b2 (25.4M parameters) backbone can outperform many previous meth-
ods using ResNet-101 (44.7M parameters) and lots of bell and whistles. This confirms the great
potentials of ViTs in visual relation reasoning. By further adding our global and local tasks, we
attain 4-6 mAP gain on original and systematic splits. We also observe that EsViT (Li et al., 2021),
a recently proposed SSL approach, also outperforms the ViT-only baseline. Therefore, we combine
their SSL task and our concept-guided tasks and reach the peak performance (40.12 mAP) on the
original HICO split. Although we do not utilize any extra supervison, RelViT+EsViT beats the
current state-of-the-art Fang et al. (2018) that uses the additional “pose” supervision that does not
exist in the HICO dataset. Overall, we raise the results of a fair counterpart (Girdhar & Ramanan,
2017) that only exploits extra bbox supervision (which is included in HICO) by 16% (34.6→ 40.12)
on the original split. For systematic splits, we raise the results of Hou et al. (2020) by 43% (26.65

1Note that the projection head here is different from DINO’s: it works on all output local features. While
in DINO, the projection head only works on the summary of input image, i.e. the resulting feature after a
max-pooling operation or the feature that corresponds to [CLS] in the input.
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Method Ext. superv. Backbone Orig. Systematic-easy Systematic-hard
Full cls. Unseen cls. Full cls. Unseen cls.

Mallya & Lazebnik (2016)∗ ResNet-101 33.8 - - - -
Girdhar & Ramanan (2017)∗ bbox ResNet-101 34.6 - - - -
Fang et al. (2018)∗ pose ResNet-101 39.9 - - - -
Hou et al. (2020)† ResNet-101 28.57 26.65 11.94 21.76 10.58

ViT-only PVTv2-b2 35.48 31.06 11.14 19.03 18.85
EsViT (2021) PVTv2-b2 38.23 35.15 11.53 22.55 21.84
RelViT (Ours) PVTv2-b2 39.4 36.99 12.26 22.75 22.66
RelViT + EsViT (Ours) PVTv2-b2 40.12 37.21 12.51 23.06 22.89

Table 1: Results on HICO dataset. Some methods requires extra supervision. Bbox/Pose means
object-detection or pose estimation is needed. All results are reported in mAP. ∗Results reported
in the original papers; †Introduces the systematic split we use in the experiments. Full cls.: results
reported on all 600 HOI categories; Unseen cls.: results reported on the held-out HOI categories
from the training set for testing systematic generalization. Ext. superv.: extra supervision.

→ 37.21) on the systematic-easy split and 7% (21.76 → 23.06) on the systematic-hard split. Fi-
nally, although the gap between systematic and non-systematic split still exists (partly due to the
much smaller training set for systematic splits), our method makes significant progress, especially
on unseen classes (+12.3 mAP on systematic-hard). This further demonstrates the advantages of our
concept-guided ViT in systematic generalization.

3.2 MAIN RESULTS II: VISUAL QUESTION ANSWERING

Overview. GQA (Hudson & Manning, 2019) is a recent visual question answering (VQA) dataset
with a focus on relational reasoning. Each question is also labeled with semantics. By default, it
offers both pretrained-CNN grid features and region features obtained through Faster R-CNN (Ren
et al., 2015). For counterparts, we focus on fair comparisons and therefore exclude those that require
massive vision-language pretraining (Li et al., 2019a). Notably, we do not use extra supervision,
such as scene graph (Krishna et al., 2016). The RelViT configuration is almost the same as in
HICO, except that we apply the uniform sampling instead as we find it empirically works better. We
employ MCAN-Small (Yu et al., 2019) as our VQA model and the ImageNet1K-pretrained PVTv2-
b2 as our vision backbone. The results are reported on the full validation set of GQA.

Systematic split. In GQA, we especially examine the facet of productivity in systematic generaliza-
tion, i.e. the ability of reasoning with longer reasoning hops (Hupkes et al., 2020). To this end, we
exploit the extra semantics label associated with the GQA questions. We observe that the semantics
in GQA break down each question into a sequence of “reasoning hops”, where a distribution of
reasoning hops can be found in Figure 3. See the supplementary material for examples. Therefore,
our idea is to exclude questions with longer reasoning hops from the training set. We end up only
keeping questions with less than 5 reasoning hops in the training set. We refer to this setting as the
systematic split (“Sys.”) in the results.

Concepts. Inspired by recent research on vision-language pretraining (Tan & Bansal, 2019; Li et al.,
2019a; 2020a), we obtain concepts by parsing the questions into keywords. Specifically, we only
keep certain verbs, nouns, and adjectives that contain significant meanings (e.g. actions, objects,
characteristics, etc), ending up with 1615 concepts. Due to the space limit, readers may find more
details on concept parsing in the supplementary material.

Results. We report the comparison results on the original and systematic splits in Table 2. The
main goal of our experiments on GQA mainly is to verify if our method can help reduce the gap
between models using backbone features only and models using additional bbox features (with dense
object detectors). Besides, we also examine to which extent our method can improve systematic
generalization. Firstly, we observe that using ViT can largely alleviate the aforementioned gap (51.1
→ 56.62), suggesting that the object-centric representations emerge in ViTs. It implies the potential
of using ViTs in eliminating the need for external object detectors. By further adding our proposed
auxiliary tasks, we achieve the peak performance and raise the results of MCAN-Small w/o bbox
features by 13% (51.1 → 57.87) on the original split and 18% (30.12 → 35.48) on the systematic
split. Without any detection pretraining or bbox features, our method achieves very close results
to MCAN-Small w/ bbox features on both two splits. The additional results in appendix demonstrate
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Method Bbox feat.∗ Backbone Orig. Sys.

BottomUp (2018) 3 ResNet-101 53.21 -
MAC (2018b) 3 ResNet-101 54.06 -
MCAN-Small (2019) 3 ResNet-101 58.35 36.21
MCAN-Small (2019) ResNet-101 51.1 30.12
ViT-only PVTv2-b2 56.62 31.39
EsViT (2021) PVTv2-b2 56.95 31.76
RelViT (Ours) PVTv2-b2 57.87 35.48

Table 2: Results on GQA dataset. All results are reported in
overall accuracy. ∗With extra Faster R-CNN bbox features.

Testing
Training

Figure 3: Histogram of reasoning
hops over GQA training questions.

that the marginal gap could be further eliminated if we apply larger backbone models (PVTv2-b2
has much fewer parameters than ResNet-101).

3.3 WHY DO OUR AUXILIARY TASKS WORK?

The results in the previous section suggest that RelViT outperforms its counterparts on the challeng-
ing relational reasoning tasks. Now we would like to provide more insights into our method design
by answering the question: why do our auxiliary tasks work? To this end, we perform a diverse set
of analyses on accessing the impact of key components in RelViT . We also qualitatively justify the
intuitions of two auxiliary tasks. These results are reported on the HICO dataset.

3.3.1 ABLATION STUDY

Different ViT architectures. The first aspect we examine is the ViT architecture. Besides the
default choice on PVTv2-b2, we test our method with the original ViT-S/16 (Dosovitskiy et al.,
2020) and another prevalent architecture Swin-Small (Liu et al., 2021). The results are presented
in Figure 4a and Figure 4b, respectively. These two architectures can both benefit from our auxiliary
tasks and we have similar advantages over counterparts as in the default setting, which confirms our
compatibility to various ViT variants. Full quantitative results are provided in the supplementary.

Implementation of concept-feature dictionary. We conduct ablations on three facets of concept-
feature dictionary: the choice of concepts, sampling tactics, and the size of queue |Q|. In Figure 4c,
we compare three different concept choices: actions, objects, and HOIs with our best model. The
results suggest that all three choices can bring improvement to the baseline without any feature queue
(denoted as “None”) while using HOIs and objects brings larger improvement. We hypothesize that
the proposed auxiliary tasks need more “delicate” concepts to guide the ViT training but actions in
HICO tend to be vague and even ambiguous (Shen et al., 2018). Therefore, albeit the consistent
advantages of our method in terms of different concept selections, a careful design of concept space
could still be pivotal to achieve the peak performance in relational reasoning.

Furthermore, we show the interplay between sampling strategies and queue size |Q| in Figure 4d.
Interestingly, |Q| has a much smaller impact on the performance with the “most-recent” sampling
than that with the uniform sampling. As we mentioned in Section 2.2, the uniform sampling could
help with more diverse features but could also elicit unstable training. Larger |Q| makes the two
consequences in the uniform sampling more prominent, thus causing worse performance when stable
training is the bottleneck (e.g. in a small dataset like HICO). Rather, the “most-recent” sampling
can be less sensitive to |Q| as only the recent features could be sampled even when |Q| is large.

Auxiliary tasks. In Figure 4e, we show the results of only adding our global or local task in Laux.
Surprisingly, just using the local task is enough to deliver competitive results in the HICO task. This
suggests that the real bottleneck in ViTs seems to be better object-centric representations, as our
local task is designed for this. Nonetheless, adding our global task can still elicit clear advantages
over other counterparts that do not exploit concept-guided learning.

Robustness to α. We sweep the trade-off weight α from 0.02 to 0.5 and report the results in Fig-
ure 4f, where solid and dash represent our method and the baseline, respectively. It is observed that
adding the proposed auxiliary tasks always achieves better performances than the baseline, indicat-
ing our method is robust to hyper-parameters. Moreover, the improvements become slightly more
significant when α is relatively large (but not too large). The peak performances in different splits
all appear around α = 0.1, which we thus use as our default choice.
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Figure 4: Ablation study on HICO. We investigate the impact of ViT architectures, implementation
of concept-feature dictionary, auxiliary tasks, and the weight α on the performance of our method.
Sys.: systematic.

Figure 5: Visual illustrations of image features against HOI categories on the HICO test set via
t-SNE. We compare the features obtained by ViT without any auxiliary task (ViT-only), ViT with
non-concept auxiliary tasks (EsViT), and RelViT. Besides those clusters that are identified with the
other two baselines, clusters that can only be identified with RelViT are highlighted.

3.3.2 QUALITATIVE INSPECTION

Features vs. concepts. To further justify whether our global task can truly facilitate the learned
representation to be more relational, we illustrate the learned output features (max-pooling on all
the output tokens) by t-SNE visualization in Figure 5. Different colors correspond to different HOI
categories, i.e. the concepts we used in RelViT. The results read that more clusters can be identified
over the image features extracted by RelViT; therefore our concept-guided global task can encourage
the learned features to be more discriminative regarding the relational concepts than the baselines.

Semantic correspondence. We also probe the learned semantic correspondence that could be en-
couraged by our local task, by intuition. We aim at comparing the correspondence extracted from
a model trained with different auxiliary tasks, i.e. no auxiliary task, no-concept auxiliary tasks, and
our auxiliary tasks. We consider two settings: 1) semantic setting (two images that belong to the
same concept, e.g. both contains a cat), and 2) non-semantic setting (two views of the same image).
Results in Figure 6 highlight the high-similarity matches. Although our method and non-concept
baseline (EsViT) both work fine in the non-semantic setting, our method can identify the semantic
correspondence on more objects thanks to the concept guidance. Not surprisingly, baseline w/o any
auxiliary task (ViT-only) performs the worst as it may suffer from over-smoothness (Gong et al.,
2021) and lose all the meaningful spatial information after fine-tuning on the target task.

4 RELATED WORK

Systematic generalization in visual reasoning. Systematic generalization (Hupkes et al., 2020;
Bahdanau et al., 2018) characterizes to which extent a learning agent can identify and exploit the un-

8



Published as a conference paper at ICLR 2022

Figure 6: Visualization of correspondence. The correspondence is extracted between two views of
the same image (upper) and two images that belong to the same concept (lower), using the learned
model on HICO. RelViT can extract correspondence on more objects in the two images (seman-
tic correspondence) setting. Best viewed on screen.

derlying entities and relations of the training data, and generalize to novel combinations and longer
reasoning hops. There has been extensive research on inspecting and tackling systematic general-
ization in visual reasoning (Johnson et al., 2017; Kim & Mnih, 2018; Higgins et al., 2016; Kuhnle
& Copestake, 2017). However, most of them only focus on controlled and synthetic domains (Ruis
et al., 2020; Zhang et al., 2019; Barrett et al., 2018; Xie et al., 2021; Nie et al., 2020), while the
open-ended real-world domains are largely neglected with very few exceptions (Shen et al., 2018;
Teney et al., 2020; Jiang et al., 2022). In this paper, we tackle systematic generalization in visual
relational reasoning with natural images, thereby filling the gap between synthetic and real domains.

Object-centric and relational representations. Many seminal research reveals that ML models
can benefit from object-centric and relational representations with better sample efficiency and gen-
eralization (Farhadi & Sadeghi, 2013; Ding et al., 2020; Mrowca et al., 2018). However, obtaining
such representations from unstructured inputs, i.e. raw images, still remains challenging (Greff
et al., 2019; Locatello et al., 2020; 2019; Yu et al., 2021). Prevalent approaches adopt a latent vari-
able model to explicitly infer the foreground-background split as well as objects & relations (Eslami
et al., 2016; Lin et al., 2020; Zhu & Mumford, 2007), while recent findings suggest that they can
be an emerging property of transformers trained with self-supervised objectives (Caron et al., 2021;
Li et al., 2021). Our goal aligns better with the later regime, as it enables implicit representations
and thus could be more versatile and efficient. A key difference is that these methods do not exploit
concepts in reasoning benchmarks, making them less capable of learning semantic representations.

Self-supervised learning for ViTs. The recent resurgence on self-supervised learning (SSL) of
image models has delivered impressive results on many few-shot or zero-shot tasks (Oord et al.,
2018). From a high-level view, these approaches can be categorized into contrastive (He et al.,
2020; Chen et al., 2020) and non-contrastive (Chen & He, 2021). However, not all SSL avenues
work well with vision transformers (ViTs) and some delicate design may be needed. Caron et al.
(2021) found their non-contrastive learning objective (DINO) manifested better quantitative results
and emerging properties on ViTs. Chen et al. (2021) brought similar results on contrastive SSL. Li
et al. (2021) further introduced patch-level SSL objective to ViTs for dense prediction tasks. In this
paper, instead of proposing a new SSL approach, we make better use of concepts for ViT training,
which can be directly applied to the existing SSL objectives for the improved visual reasoning.

5 CONCLUSION

In this paper, our goal is to seek a better inductive bias for visual relational reasoning, especially on
real-world data. We found ViTs to be a promising candidate due to their potential on relational rea-
soning, object-centric learning, and systematic generalization. We further presented RelViT, a sim-
ple yet efficient method for exploiting concepts in the visual relational reasoning tasks to boost the
performances of ViTs. In specific, we proposed two auxiliary tasks in RelViT : a global task for se-
mantically consistent relational representation, and a local task for learning object-centric semantic
correspondence. These two tasks are made possible through the use of our proposed concept-feature
dictionary. RelViT largely outperforms other counterparts on two challenging visual relational rea-
soning benchmarks. While we mainly focus on extending ViTs to visual reasoning using auxiliary
tasks, further exploration of combining our work with architectural modification over ViTs to enable
better generalization could be a new direction for future work.
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A A FORMAL DESCRIPTION OF LEARNING IN RELVIT

Algorithm 1 formally depicts the execution flow of RelViT.

Algorithm 1 RelViT: Concept-guided Vision Transformer

Input: A set of training images with concepts {(I1, C1), · · · }, an image augmentation function aug(·), mo-
mentum update factor λ, loss weight α, a concept-feature dictionary D, teacher and student ViT gt and gs,
parameterized by θt and θs, respectively.

1: for (Ii, Ci) in {(I1, C1), · · · } do
2: I

(1)
i , I

(2)
i = aug(Ii), aug(Ii)

3: Uniformly draw a concept code c ∼ Ci.
4: Retrieve Q from D with c.
5: if Q is not empty then
6: Sample feature f ∼ Q, following some sampling tactics.
7: Laux = LGlobal(f, gs(I

(2)
i )) + LLocal(f, gs(I

(2)
i ))

8: Insert feature gt(I
(1)
i ) into Q; if it is full, remove the oldest feature.

9: else
10: Laux = LGlobal(gt(I

(1)
i ), gs(I

(2)
i )) + LLocal(gt(I

(1)
i ), gs(I

(2)
i ))

11: end if
12: Update θs with the loss function L = Lmain + αLaux.
13: Update θt using an EMA: θt ← λθt + (1− λ)θs.
14: end for

B ADDITIONAL DETAILS ON RELVIT

B.1 INPUT PIPELINE

We adopt the following data augmentation pipeline for the generating the additional views for our
two auxiliary tasks

1. Randomly crop and resize the image into (224, 224) with scale ratio (0.2, 1.0);

2. Randomly jitter the color of the image on brightness, contrast saturation and hue with probability
of (0.4, 0.4, 0.4, 0.1), respectively;

3. Randomly turn the image into gray scale with probability 0.2;

4. Randomly apply Gaussian blur with kernel size 23 and sigma (0.1, 2.0) and probability 0.5;

5. Randomly flip the image horizontally.

Notably, we apply a random crop operation to ensure that all the input images for our auxiliary tasks
contain the same number of patches.

B.2 HYPER-PARAMETERS AND BASELINES

Table 3 summarizes the hyper-parameters used by RelViT. We inherit most of the parameters from
DINO (Caron et al., 2021).
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Table 3: Hyperparameters for RelViT.

Parameter Value

Optimizer AdamW with epsilon 1e−1 (HICO) / 1e-5 (GQA)
Gradient clipping norm No grad clipping (HICO) / 0.5 (GQA)
Base learning rate 1.5e−4 (HICO) / 3e−5 (GQA)
Learning rate schedule 0.1 scale with milestones [15, 25] (HICO) / [8, 10] (GQA)
Batch size 16 (HICO) / 64 (GQA)
Total training epochs 30 (HICO) / 12 (GQA)

Temperature τ in DINO loss 0.04 for teacher and 0.1 for student, we don’t use schedule.
Momentum m for teacher 0.999
Center m for center features 0.9

Sampling method “most-recent” (HICO) / uniform (GQA)
Queue size |Q| 10

Table 4 summarizes the key details about the loss implementation of different baselines and RelViT.

Table 4: Key details about the loss implementation in baselines and RelViT .

LGlobal LLocal Compare student(aug(img)) with

DINO x teacher(aug(img))
EsViT x x teacher(aug(img))
RelViT x x queues[concept(img)].pop()
RelViT + EsViT x x teacher(aug(img)) and

queues[concept(img)].pop()

C ADDITIONAL DETAILS ON THE DATASETS

C.1 HICO

C.1.1 ORIGINAL AND SYSTEMATIC SPLITS

Besides the official training/testing split, we adopt the splits for systematic generalization presented
in (Hou et al., 2020). It offers two splits that follow different strategies to select held-out HOI
categories. Systematic-easy only select rare HOI categories (with less than 10 training samples),
while Systematic-hard select non-rare categories instead. Therefore, the training set of Systematic-
hard will contain much fewer samples and become more challenging. Some basic statistics of these
training/testing splits can be found in Table 5.

Splits #Training samples #Training HOIs #Testing samples #Testing HOIs

Original 38118 600 9658 600
Systematic-easy 37820 480 9658 600
Systematic-hard 9903 480 9658 600

Table 5: Statistics of the splits of HICO dataset.

C.1.2 IMPLEMENTATION OF Lmain

In HICO, there might be multiple HOIs for a single image. We, therefore, formulate the HOI pre-
diction task as a multi-class classification problem. Specifically, the model makes 600 binary clas-
sifications and Lmain in equation 3 is a binary cross-entropy loss.
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C.2 GQA

C.2.1 ORIGINAL AND SYSTEMATIC SPLITS

We introduce a systematic split for the GQA dataset that is based on reasoning hops. Specifically,
we remove those questions that have more than 4 reasoning hops from the training set. Some basic
statistics of these training/testing splits can be found in Table 6.

Splits #Training samples #Testing samples

Original 943000 132062
Systematic 711945 32509

Table 6: Statistics of the splits of GQA dataset.

C.2.2 REASONING HOPS

Since all the questions and answers in the GQA dataset are synthetic, it additionally provides “se-
mantics” that characterizes the reasoning procedure that generates the answer from a question and
a visual scene. These semantics are composed of multiple “reasoning primitives” that act like func-
tions: receiving arguments and generating output for the next reasoning step. It is believed they can
reflect whether a question will require complex multi-hop reasoning – a pivotal angle of systematic
generalization. Therefore we develop our systematic split with it. Table 7 provides a few examples
on semantics.

Question Semantics (Reasoning hops)

Is the pizza with the pepper small
and covered?

relate([0], pizza, with, s(1130674));
filter([1], pizza);
verify([2], covered);
verify size([2], small);
and([3,4]);

Do you see any tablecloths or
dressers?

select([], dreser);
exist([0], ?);
select([], tablecloth);
exist([2], ?);
or([1, 3], ?);

Are there microwave ovens to the
right of the appliance near the
window?

select([], window);
relate([0], appliance, near, s(1297947))
relate([1], microwave, right, s(1297947));
exist([2], ?);

Table 7: Examples of semantics (reasoning hops) in GQA dataset.

C.2.3 CONCEPT PARSING

We obtain the concepts in the GQA dataset by parsing the questions into word tokens. Specifically,
we construct a set of concepts that contain nouns, verbs, and adjectives that are with significant
meaning. We also manually filter some ambiguous words from this set. The resulting concept set
contains 1615 concepts.

We use the python nltk package to process the question. The parsing procedure starts with part-of-
speech tagging, where we only keep nouns (NN), verbs (VB) and adjectives (JJ). Then we lemmatize
the remaining words to obtain the minimal form of them. Finally, we remove those that do not
present in the pre-selected concept list. Additionally, we skip questions with “No” as the answer
as the question may be unrelated to the image. We provide the statistics of the concepts in GQA
in Table 8. The number of associated questions of all the 1615 concepts and a histogram on the
number of concepts for each question is presented in Figure 7a and Figure 7b, respectively.
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Item Value

Questions without concept 166217 out of 943000 (17.6%)
Concepts without any question 14
Concepts with < 10 questions 209
Averaged #questions per concept 1030.9
Median #questions per concept 106

Top 20 concepts and their #associated questions man 52295
animal 44070
furniture 36523
white 33141
front 30779
person 28751
vehicle 26133
woman 25769
bottom 22624
black 22517
device 21962
food 19683
fence 19172
chair 18872
table 18649
hold 18090
shirt 16483
blue 15434
car 14838

Table 8: Statistics of concepts in GQA training set.
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Figure 7: Histograms of concepts in GQA training set.

C.2.4 IMPLEMENTATION OF Lmain

GQA is formulated as a classification problem, i.e. the learner needs to select an answer from the
pre-defined answer set; thus Lmain in equation 3 is a cross-entropy loss.

D FULL QUANTITATIVE RESULTS ON ABLATION STUDIES

We provide the full quantitative results of the ablation studies in Table 9.
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Method Orig. Sys.-easy Sys.-hard

ViT-only 27.67 26.72 15.23
EsViT 30.83 30.28 17.67
RelViT 31.45 30.88 18.33

EsViT+RelViT 33.15 31.09 19.24

(a) RelViT with ViT-S/16

Method Orig. Sys.-easy Sys.-hard

ViT-only 36.08 31.22 20.88
EsViT 38.11 35.22 21.82
RelViT 39.07 36.27 21.81

EsViT+RelViT 39.86 37.17 22.82

(b) RelViT with Siwn-Small

Concepts Orig. Sys.-easy Sys.-hard

None 35.48 31.06 19.03
Actions 38.8 35.14 22.34
Objects 39.24 36.59 21.65
HOIs 40.12 37.31 22.79

(c) Different choice of concepts

|Q| Most-recent Uniform

5 39.71 39.75
10 40.12 39.93
30 39.78 39.06
50 39.41 38.49

(d) Different queue length |Q|

Tasks Orig. Sys.-easy Sys.-hard

None 35.48 31.06 19.03
Global 37.63 34.88 21.07
Local 39.54 36.74 22.55
Both 40.12 37.31 22.79

(e) Global or local tasks

α Orig. Sys.-easy Sys.-hard

0.02 38.45 36.32 21.85
0.05 39.49 36.99 22.62
0.1 40.12 37.31 23.06
0.2 40.04 36.67 22.94
0.5 39.54 35.42 22.79

(f) Robustness to α

Table 9: Full quantitative results (on full class of HICO) of the ablation studies.

E ADDITIONAL RESULTS

E.1 RELVIT WITH LARGER BACKBONE MODELS

As we mentioned in Section 3.1, the ViT backbone we use (PVTv2-b2) only has 25.4M parameters,
even less than the commonly-used ResNet-101 (44.7M parameters). Therefore, we testify RelViT
with larger state-of-the-art ViT backbones: PVTv2-b3 (45.2M parameters) and Swin-base (88M
parameters) (Liu et al., 2021) and provide the results on HICO and GQA below:

Table 10: Results with larger ViT models on HICO.

HICO mAP Fang et al. (2018) RelViT + EsViT
(PVTv2-b2)

RelViT + EsViT
(PVTv2-b3)

RelViT + EsViT
(Swin-base)

Original 39.9 40.12 42.61 43.98
Systematic-easy - 37.21 39.92 42.04
Systematic-hard - 23.06 25.56 28.36

Table 11: Results with larger ViT models on GQA.

GQA overall accuracy MCAN-Small
(w/ bbox)

RelViT
(PVTv2-b2)

RelViT
(PVTv2-b3)

RelViT
(Swin-base)

original 58.35 57.87 61.41 65.54
systematic 36.21 35.48 36.25 37.51
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F ADDITIONAL DISCUSSION ON THE RELATED WORK

F.1 DISCUSSION ON THE MEMORY BANK MECHANISM

Intuitively, the idea of using the concept-feature dictionary to the ViT training could be similar to
the memory bank mechanism in MoCo (He et al., 2020), where the features are stored in a queue for
replaying later. However, the difference is also clear: we have multiple queues that are indexed by
concept codes while MoCo only has a single queue. Similar use of memory bank can also be found
in Wu et al. (2018); Tian et al. (2020) but they follow MoCo, and therefore it is used for providing
negative samples when computing the self-supervised contrastive learning loss. Rather, our concept-
feature dictionary is designed to make better use of the concept supervision via our concept-guided
global and local losses to improve the performance on visual relational reasoning.

F.2 COMPARISON TO MAC (HUDSON & MANNING, 2018B)

Here we highlight the difference between our concept-feature dictionary and the knowledge base
in MAC (Hudson & Manning, 2018b): The knowledge base in MAC is used during a single VQA
reasoning pass (i.e. it will be cleared & initialized with the new image features (visual knowledge)
whenever a new <image, question> pair comes), and thus is used in both the training and
testing time for the VQA reasoning. However, the concept-feature dictionary in RelViT is used to
store & retrieve features according to the concept of the current input image and help compute our
local and global losses that encourage learning better representations. Therefore, we use it in the
training time only as these two losses won’t be computed & optimized during testing.
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