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Abstract
It has been a challenge to learning skills for an
agent from long-horizon unannotated demonstra-
tions. Existing approaches like Hierarchical Imita-
tion Learning(HIL) are prone to compounding er-
rors or suboptimal solutions. In this paper, we pro-
pose Option-GAIL, a novel method to learn skills
at long horizon. The key idea of Option-GAIL is
modeling the task hierarchy by options and train
the policy via generative adversarial optimiza-
tion. In particular, we propose an Expectation-
Maximization(EM)-style algorithm: an E-step
that samples the options of expert conditioned
on the current learned policy, and an M-step that
updates the low- and high-level policies of agent
simultaneously to minimize the newly proposed
option-occupancy measurement between the ex-
pert and the agent. We theoretically prove the con-
vergence of the proposed algorithm. Experiments
show that Option-GAIL outperforms other coun-
terparts consistently across a variety of tasks.

1. Introduction
Hierarchical Imitation Learning (HIL) has exhibited
promises on acquiring long-term skills directly from demon-
strations (Le et al., 2018; Yu et al., 2018; Byrne & Russon,
1998; Sharma et al., 2019; Hamidi et al., 2015). It contends
the nature of sub-task decomposition in long-horizontal
tasks, enjoying richer expressivity on characterizing com-
plex decision-making than canonical Imitation Learning
(IL). In general, HIL designs micro-policies for accomplish-
ing the specific control for each sub-task, and employs a
macro-policy for scheduling the switching of micro-policies.
Such a two-level decision-making process is usually formu-
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lated by an Option model (Sutton et al., 1999) or goal-based
framework (Le et al., 2018). Although some works (Fei
et al., 2020) have assumed the help of sub-task segmenta-
tion annotations, this paper mainly focuses on learning from
unsegmented demonstrations to allow more practicability.

Plenty of HIL methods have been proposed, including the
Behavior-Cloning(BC) based and the Inverse Reinforce-
ment Learning(IRL) based approaches. For the first avenue,
Zhang & Paschalidis (2020); Le et al. (2018) customize
BC to hierarchical modeling (Daniel et al., 2016), which,
unfortunately, is prone to compounding errors (Ross et al.,
2011) in case that the demonstrations are limited in practice.
On the contrary, IRL is potential to avoid compounding
errors by agent self-explorations. However, addressing IRL
upon the Option model, by no means, is non-trivial consid-
ering the temporal coupling of the high-level and low-level
policies. The works by Sharma et al. (2018); Lee & Seo
(2020) relax this challenge by training the two-level policies
separately. Nevertheless, this two-stage method potentially
leads to sub-optimal solutions in the absence of training
collaboration between the two stages.

To overcome the aforementioned issues, this work proposes
a novel Hierarchical IRL framework—Option-GAIL, which
is theoretically elegant, free of compounding errors, and
end-to-end trainable. Basically, it is built upon GAIL (Ho &
Ermon, 2016) with two nutritive enhancements: 1) replacing
Markov Decision Process (MDP) with the Option model;
2) augmenting the occupancy measurement matching with
options. Note that GAIL is a popular IL method that casts
policy learning upon MDP into an occupancy measurement
matching problem. Therefore, it is natural to replace the
MDP with the Option model for hierarchical modeling. Be-
sides, GAIL mimicking a policy from an expert is equivalent
to matching its occupancy measurement. This equivalence
holds when the policy is one-to-one corresponding to its
induced occupancy measurement, which, yet, is not valid
in our hierarchical context. As we will depict in the paper,
the policy of HIL is related to options, and its one-to-one
correspondence only exists with regard to option-extended
occupancy measurement other than traditional occupancy
measurement without options. Hence, it is indispensable
to involve options into the matching goal in our second
enhancement. Notably, the option switching is inherently
guaranteed in our model, without extra regulators such as
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mutual information used in (Sharma et al., 2018) to encour-
age the correlation between action-state pairs and options.

It is non-straightforward to train our Option-GAIL, specifi-
cally when the expert options are unavailable. We thereby
propose an EM-like learning algorithm to remedy the train-
ing difficulty. Specifically, in the E-step, we apply a Viterbi
method (Viterbi, 1967) to infer the expert options condi-
tional on the agent policy and expert actions/states. For the
M-step, with the expert options provided, we optimize both
the high- and low-level policies to minimize the discrepancy
between the option-occupancy measurements of expert and
agent. To be more specific, the M-step is implemented by
a min-max game: maximizing a discriminator to estimate
the discrepancy, and updating the policy to minimize the
discriminative cost via a hierarchical RL method (Zhang &
Whiteson, 2019). Notably, the convergence of the proposed
EM algorithm is theoretically guaranteed if certain mild
conditions hold.

In summary, our main contributions include:

• We propose Option-GAIL, a theoretically-grounded
framework that integrates hierarchical modeling with
option-occupancy measurement matching. It is proved
that Option-GAIL ensures the discrepancy minimiza-
tion between the policies of demonstrator and imitator.

• We propose an EM-like algorithm to train the param-
eters of Option-GAIL end-to-end. This method al-
ternates option inference and policy updating and is
proved to converge eventually.

• We evaluate our proposed method on several robotic
locomotion and manipulation tasks against state-of-the-
art HIL/IL baselines. The results demonstrate that our
approach attains both dramatically faster convergence
and better final performance over the counterparts. A
complete set of ablation studies also verify the validity
of each component we proposed.

2. Related Works
There have already been plenty of works researching on
HIL, which, in general, can be categorized into two classes:
Hierarchical Behavior Cloning (H-BC) and Hierarchical
Inverse Reinforcement Learning (H-IRL).

Hierarchical BC. In these avenues, HIL is an extension
of Behavior Cloning (BC) (Pomerleau, 1988; Atkeson &
Schaal, 1997). As a result, the missing sub-task information
needs to be provided or inferred to ensure the learnability
of hierarchical policies. For example, Le et al. (2018) re-
quire predefined sub-goals when learning the goal-based
policies; Kipf et al. (2019) try to alleviate the requirement
of sub-task information by formulating the policy learning

as an unsupervised trajectory soft-segmentation problem;
Daniel et al. (2016) and Zhang & Paschalidis (2020) employ
Baum-Welch algorithm (Baum et al., 1972) upon the option
framework to infer the latent option from demonstrations,
and directly optimize both the high- and low-level policies.
Despite its easy implementation, behavior cloning is vulner-
able to compounding errors (Ross et al., 2011) in case of
the limited demonstrations, while our method enjoys better
sample efficiency thanks to the IRL formulation.

Hierarchical IRL. Contrasted to the BC-based approaches,
Hierarchical IRL avoids compounding errors by taking
advantage of the agent’s self-exploration and reward re-
construction. Following the Generative Adversarial Imi-
tation Learning (GAIL) (Ho & Ermon, 2016), the works
by (Sharma et al., 2018; Lee & Seo, 2020) realize HIL by
introducing a regularizer into the original IRL problem and
maximizing the directed information between generated tra-
jectories and options. However, the high- and low-level
policies are trained separately in these approaches: the high-
level policy is learned with behavior cloning and remains
fixed during the GAIL-based low-level policy learning. As
we reported in the experiments, such a two-staged paradigm
could lead to potentially poor convergence compared to our
end-to-end training fashion. Henderson et al. (2018) propose
an end-to-end HIL method without pre-training. However,
it adopts a Mixture-of-Expert (MoE) strategy rather than the
canonical option framework. Therefore, an option is exclu-
sively determined by the corresponding state, ignoring its
relation to the option of the previous step (Figure 1). On the
contrary, our method conducts option inference and policy
optimization that are strictly amenable to the option dynam-
ics (Sutton et al., 1999), thus delineating the hierarchy of
sub-tasks in a more holistic manner.

3. Preliminaries
This section briefly introduces preliminary knowledge and
notation used in our work.

Markov Decision Process: A Markov Decision Process
(MDP) is a 6-element-tuple

(
S,A, P as,s′ , Ras , µ0, γ

)
, where

(S,A) denote the continuous/discrete state-action space;
P as,s′ = P (st+1 = s′|st = s, at = a) is the transi-
tion probability of next state s′ ∈ S given current state
s ∈ S and action a ∈ A, determined by the environ-
ment; Ras = E[rt|st = s, at = a] returns the expected
reward from the task when taking action a on state s;
µ0(s) denotes the initial state distribution and γ ∈ [0, 1)
is a discounting factor. The effectiveness of a policy
π(a|s) is evaluated by its expected infinite-horizon reward:
η(π) = Es0∼µ0,at∼π(st),st+1∼Patst,st+1

[∑∞
t=0 γ

trt
]
.

The Option Framework: Options O = {1, · · · ,K}
are introduced for modeling the policy-switching pro-
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cedure on long-term tasks (Sutton et al., 1999).
An option model is defined as a tuple O =(
S,A, {Io, πo, βo}o∈O, πO(o|s), P as,s′ , Ras , µ0, γ

)
, where,

S,A, P as,s′ , Ras , µ0, γ are defined as the same as MDP;
Io ⊆ S denotes an initial set of states, from which an op-
tion can be activated; βo(s) = P (b = 1|s) is a terminate
function which decides whether current option should be ter-
minated or not on a given state s; πo(a|s) is the intra-option
policy that determines an action on a given state within an
option o; a new option is activated in the call-and-return
style by an inter-option policy πO(o|s) once the last option
terminates.

Generative Adversarial Imitation Learning (GAIL):
For simplicity, we denote (x0, · · · , xn) as x0:n for short
throughout this paper. Given expert demonstrations on a
specified task as Ddemo =

{
τE = (s0:T , a0:T )

}
, imitation

learning aims at finding a policy π that can best reproduce
the expert’s behavior, without the access of the real reward.
Ho & Ermon (2016); Ghasemipour et al. (2020) cast the
original maximum-entropy inverse reinforcement learning
problem into an occupancy measurement (Syed et al., 2008)
matching problem:

arg min
π

Df

(
ρπ(s, a)‖ρπE (s, a)

)
, (1)

where, Df computes f -Divergence, ρπ(s, a) and ρπE (s, a)
are the occupancy measurements of agent and expert
respectively. By introducing a generative adversarial
structure (Goodfellow et al., 2014), GAIL minimizes
the discrepancy via alternatively optimizing the policy
and the estimated discrepancy. To be specific, a dis-
criminator Dθ(s, a) : S × A 7→ (0, 1) parameter-
ized by θ in GAIL is maximized and then the policy
is updated to minimize the overall discrepancy along
each trajectory of exploration. Such optimization pro-
cess can be cast into: maxθ minπ Eπ

[
logDθ(s, a)

]
+

EπE
[
log
(
1−Dθ(s, a)

)]
.

4. Our Framework: Option-GAIL
In this section, we provide the details of the proposed
Option-GAIL. Our goal is towards imitation learning from
demonstrations of long-horizon tasks consisting of small
sub-tasks. We first introduce necessary assumptions to facil-
itate our analyses, and follow it up by characterizing the mo-
tivations and formulation of Option-GAIL. We then provide
the EM-like algorithm towards the solution and conclude
this section with theoretical analyses on the convergence of
our algorithm.

4.1. Assumptions and Definitions

We have introduced the full option framework for modeling
switching procedure on hierarchical tasks in Section 3. How-
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Figure 1. The probabilistic graph of the one-step option model.
The shade masks the group of nodes that induce our option-
occupancy measurement.

ever, it is inconvenient to directly learn the policy of this
framework due to the difficulty of determining the initial set
Io and break condition βo. Here, we introduce the following
assumption given which the original option framework will
be equivalently converted into the one-step option that is
easier to be dealt with.

Assumption 1 (Valid Option Switching) We assume that,
1) each state is switchable: Io = S,∀o ∈ O; 2) each
switching is effective: P (ot = ot−1|βot−1

(st−1) = 1) = 0.

Assumption 1 asserts that each state is switchable for each
option, and once the switching happens, it switches to a
different option with probability 1. Such assumption usually
holds in practice without the sacrifice of model expressive-
ness. Now, we define the following one-step model.

Definition 1 (One-step Option) We define Oone-step =(
S,A,O+, πH , πL, P

a
s,s′ , R

a
s , µ̃0, γ

)
where O+ = O ∪

{#} consists of all options plus a special initial option
class satisfying o−1 ≡ #, β#(s) ≡ 1. Besides, µ̃0(s, o)

.
=

µ0(s)1o=#, where 1x=y is the indicator function, and it is
equal to 1 iff x = y, otherwise 0. The high- and low-level
policies are defined as:

πH(o|s, o′) .
= βo′(s)πO(o|s) +

(
1− βo′(s)

)
1o=o′ ,

πL(a|s, o) .
= πo(a|s).

(2)

It can be derived that Oone-step = O under Assumption 11.
This equivalence is beneficial as we can characterize the
switching behavior by only looking at πH and πL without
the need to justify the exact beginning/breaking condition
of each option. We denote π̃ .

= (πH , πL) and Π̃ = {π̃}
as the set of stationary policies. We will employ the one-
step option in the remainder of our paper. Note that in
a current paper (Li et al., 2021) the rigorous notions and
formulations have been provided for further discussing the
relationship between the full option model and the one-step
option model.

We also provide the definition of the option-occupancy mea-

1The proofs of all theorems are provided in Appendix.
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surement by borrowing the notion of the occupancy mea-
surement ρ(s, a) from MDP (Syed et al., 2008).

Definition 2 (Option-Occupancy Measurement) We de-
fine the option-occupancy measurement as ρπ̃(s, a, o, o′)

.
=

Eπ̃
[∑∞

t=0 γ
t1(st=s,at=a,ot=o,ot−1=o′)

]
.

The measurement ρπ̃(s, a, o, o′) can be explained as the
distribution of the state-action-option tuple that generated
by the policy πH and πL on a given µ̃0 and P as,s′ . According
to the Bellman Flow constraint, one can easily obtain that
ρπ̃(s, a, o, o′) belongs to a feasible set of affine constraint
D = {ρ(s, a, o, o′) ≥ 0;

∑
a,o ρ(s, a, o, o′) = µ̃0(s, o′) +

γ
∑
s′,a′,o′′ P

a′

s′,sρ(s′, a′, o′, o′′)}.

4.2. Problem Formulation

Now we focus on the imitation task on long-term demonstra-
tions. Note that GAIL is no longer suitable for this scenario
since it is hard to capture the hierarchy of sub-tasks by MDP.
Upon GAIL, the natural idea is to model the long-term tasks
via the one-step Option instead of MDP, and the policy is
learned by minimizing the discrepancy of the occupancy
measurement between expert and agent, namely,

min
π̃
Df

(
ρπ̃(s, a)‖ρπ̃E (s, a)

)
. (3)

While this idea is straightforward and never explored before,
we claim that it will cause solution ambiguity—we cannot
make sure that π̃ = π̃E , even we can get the optimal solution
ρπ̃(s, a) = ρπ̃E (s, a) in Equation 3.

Intuitively, for the hierarchical tasks, the action we make
depends not only on the current state we observe but also
on the option we have selected. By Definition 1, the hierar-
chical policy is relevant to the information of current state,
current action, last-time option and current option, which
motivates us to leverage the option-occupancy measurement
instead of conventional occupancy measurement to depict
the discrepancy between expert and agent. Actually, we
have a one-to-one correspondence between Π̃ and D.

Theorem 1 (Bijection) For each ρ ∈ D, it is the option-
occupancy measurement of the following policy:

πH =

∑
a ρ(s, a, o, o′)∑
a,o ρ(s, a, o, o′)

, πL =

∑
o′ ρ(s, a, o, o′)∑
a,o′ ρ(s, a, o, o′)

, (4)

and π̃ = (πH , πL) is the only policy whose option-
occupancy measure is ρ.

With Theorem 1, optimizing the option policy is equivalent
to optimizing its induced option-occupancy measurement,
since ρπ̃(s, a, o, o′) = ρπ̃E (s, a, o, o′) ⇔ π̃ = π̃E . Our
hierarchical imitation learning problem becomes:

min
π̃
Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)
(5)
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Figure 2. Illustration of the different convergence properties of the
optimisation problems defined in Equation 3 and Equation 5. The
options are not explicitly constrained by Equation 3

.

Note that the optimization problem defined in Equation 5
implies that in Equation 3, but not vice versa: (1) since
ρπ̃(s, a) =

∑
o,o′ ρπ̃(s, a, o, o′), we can easily obtain

ρπ̃(s, a, o, o′) = ρπ̃E (s, a, o, o′) ⇒ ρπ̃(s, a) = ρπ̃E (s, a);
(2) as Eq(o,o′)

[
Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)]
≥

Eq(o,o′)
[
Df

(
ρπ̃(s, a)‖ρπ̃E (s, a)

)]
for any option distribu-

tion q(o, o′), addressing the problem defined in Equation 5
is addressing an upper bound of that defined in Equation 3.
Indeed, we will show in § 4.6 that decreasing the goal in
Equation 5 will definitely decrease that of Equation 3 given
certain conditions. Figure 2 depicts the relationship between
Equation 5 and Equation 3.

Yet, it is nontrivial to tackle Equation 5 particularly owing
to the unobserved options in expert demonstrations. Here,
we propose an EM-like algorithm to address it, which will
be detailed in § 4.3 and § 4.4.

4.3. Option-Occupancy Measurement Matching

In this section, we assume the expert options are given
and train the hierarchical policy π̃ to minimize the goal
defined in Equation 5. We denote the option-extended expert
demonstrations as D̃demo = {τ̃ = (s0:T , a0:T , o−1:T )}.

Inspired from GAIL (Ho & Ermon, 2016), rather than calcu-
lating the exact value of the option-occupancy measurement,
we propose to estimate the discrepancy by virtue of adver-
sarial learning. We define a parametric discriminator as
Dθ(s, a, o, o

′) : S × A × O × O+ 7→ (0, 1). If specifying
the f-divergence as Jensen–Shannon divergence, Equation 5
can be converted to a min-max game:

min
π̃

max
θ

ED̃demo

[
log
(
1−Dθ(s, a, o, o

′)
)]

+ ED̃π̃

[
log
(
Dθ(s, a, o, o

′)
)]
.

(6)

The inner loop is to train Dθ(s, a, o, o
′) with the expert

demonstration D̃demo and samples D̃π̃ generated by self-
exploration. Regarding the outer loop, a hierarchical rein-
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forcement learning (HRL) method should be used to mini-
mize the discrepancy:

π̃? = arg min
π̃

Eπ̃
[
c(s, a, o, o′)

]
− λH(π̃), (7)

where c(s, a, o, o′) = logDθ(s, a, o, o
′) and the causal en-

tropy H(π̃) = Eπ̃ [− log πH − log πL] as a policy regular-
izer with λ ∈ [0, 1]. Notice that the cost function is related
to options, which is slightly different from many HRL prob-
lems with option agnostic cost/reward (Bacon et al., 2017;
Zhang & Whiteson, 2019). To deal with this case, we re-
formulate the option-reward and optimize Equation 7 using
similar idea as Zhang & Whiteson (2019).

DAC characterizes the option model as two-level MDPs.
Here we borrow its theoretical result by re-interpreting the
reward used by each MDP: For the high-level MDP, we de-
fine state sHt

.
= (st, ot−1), action aHt

.
= ot, and reward

RH((s, o′), o)
.
= −

∑
a πL(at|st, ot)c(st, at, ot, ot−1).

For the low-level MDP, we denote sLt
.
= (st, ot), aLt

.
= at,

and RL((s, o), a) = −
∑
o′ c(s, a, o, o

′)pπH (o′|s, o) with
the posterior propability pπH (o′|s, o) = πH(o|s, o′)p(o

′|s)
p(o|s) .

Other terms including the initial state distributions µH0 and
µL0 , the state-transition dynamics PH and PL are defined
similar to Zhang & Whiteson (2019). The HRL task in Equa-
tion 7 can be separated into two non-hierarchical ones with
augmented MDPs: MH = (SH , AH , PH , RH , µH0 , γ),
ML = (SL, AL, PL, RL, µL0 , γ), whose action decisions
depend on πH and πL, separately. Such two non-
hierarchical problems can be solved alternatively by utiliz-
ing typical reinforcement learning methods like PPO (Schul-
man et al., 2017) with immediate imitation reward rt =
−c(st, at, ot, ot−1) when in practice.

By alternating the inner loop and the outer loop, we finally
derive π̃? that addresses Equation 5.

4.4. Expert Option Inference

So far, we have supposed that the expert options are pro-
vided, which, however, is usually not true in practice. It
thus demands a kind of method to infer the options from
observed data (states and actions). Basically, given a policy,
the options are supposed to be the ones that maximize the
likelihood of the observed state-actions, according to the
principle of Maximum-Likelihood-Estimation (MLE).

We approximate the expert policy with π̃ learned by the
method above. With states and actions observed, the option
model will degenerate to a Hidden-Markov-Model (HMM),
therefore, the Viterbi method (Viterbi, 1967) is applicable
for expert option inference. We call this method as Option-
Viterbi for its specification to the option model.

Given current learned πH , πL and τ = (s0:T , a0:T ) ∈
Ddemo, Option-Viterbi generates the most probable values of

o−1:T that induces the maximization of the whole trajectory:

arg max
o−1:T

P (s0:T , a0:T , o−1:T )

∝ arg max
o0:T

logP (a0:T , o0:T |s0:T , o−1 = #)

= arg max
oT

α̂T (oT ).

(8)

Here a maximum foreword message α̂t(ot) is introduced
for indicating the maximum probability value of the par-
tial trajectory till time t given ot, and it can be calculated
recursively as Equation 9:

α̂t(ot) = max
oo:t−1

logP (a0:t, ot|s0:t, o0:t−1, o−1 = #)

= max
ot−1

α̂t−1(ot−1) + log πH(ot|st, ot−1)

+ log πL(at|st, ot),

(9)

α̂0(o0) = log πL(a0|s0, o0) + log πH(o0|s0,#). (10)

Clearly, Option-Viterbi has a computation complexity of
O(T × K2) for a T -step trajectory with K options. By
back-tracing ot−1 that induces the maximization on α̂(ot)
at each time step, the option-extended expert trajectories
D̃demo can finally be acquired.

Although our above option inference process implies that the
expert demonstrations are assumed to be generated through
a hierarchical policy as the same as the agent, our method
is still applicable to the non-hierarchical expert, given the
fact that a non-hierarchical expert can be imitated by a
hierarchical agent (with fewer options activated).

4.5. Summary of Option-GAIL

We briefly give an overview of our proposed Option-GAIL
in Algorithm 1. With expert-provided demonstrations
Ddemo = {τE = (s0:T , a0:T )} and initial policy π̃, our
method alternates the policy optimization and option infer-
ence for sufficient iterations.

Algorithm 1 Option-GAIL

Data: Expert trajectories Ddemo =
{
τE =

{
(s0:T , a0:T )

}}
Input: Initial policy π̃0 = (π0

H , π
0
L)

Output: Learned Policy π̃?

for n = 0 · · ·N do
E-step: Infer expert options with π̃n by (9) and get
D̃demo; sample trajectories with π̃n and get D̃π̃ .
M-step: Update π̃n+1 by (6).

end
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4.6. Convergence Analysis

Algorithm 1 has depicted how our method is computed, but
it is still unknown if it will converge in the end. To enable
the analysis, we first define a surrogate distribution of the op-
tions as q(o−1:T ). We denote Qn as the expected objective
in Equation 5 at iteration n by Algorithm 1, namely, Qn =

Eq(o−1:T )

[
Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)]
. We im-

mediately have the following convergence theorem for Al-
gorithm 1.

Theorem 2 (Convergence) Algorithm 1 only decreases the
objective: Qn+1 ≤ Qn, if these two conditions hold: (1)
q(o−1:T ) is our option sampling strategy in E-step and is
equal to the posterior of the options given current policy
π̃n, i.e. q(o−1:T ) = Pπ̃n(o−1:T |s0:T , a0:T ); (2) M-step
definitely decreases the objective in Equation 5 at each
iteration.

The proof is devised by generalizing traditional EM algo-
rithm to the f-divergence minimization problem. We provide
the details in Appendix. Since Qn ≥ 0, Theorem 2 con-
firms that Algorithm 1 will converge eventually. The first
condition in Theorem 2 guarantees that the objective of
Equation 3 is equal to Qn after E-step, thus Algorithm 1
also helps minimize Equation 3. Besides, if the global min-
imum is achieved, we have Qn = 0 ⇒ ρπ̃(s, a, o, o′) =
ρπ̃E (s, a, o, o′)⇒ π̃ = π̃E .

In our implementation, as mentioned in § 4.4, we adopt
the maximized sampling process instead of the posterior
sampling that is required by Theorem 2, as, in this way, we
find that it still maintains the convergence in our experi-
ments while reducing the computation complexity with only
sampling one option series per trajectory.

5. Experiments
We evaluate our model on four widely used robot learning
benchmarks with locomotion and manipulation tasks. We
first compare our model against other counterparts that do
not employ hierarchical structure or self-explorations. Then
we provide an ablated study to understand the impact of
each component in our model.

5.1. Environments

Four environments are used for evaluations:

Hopper-v2 and Walker2d-v2: The Hopper-v2 and the
Walker2d-v2 are two standardized continuous-time locomo-
tion environments implemented in the OpenAI Gym (Brock-
man et al., 2016) with the MuJoCo (Todorov et al., 2012)
physics simulator. On these two tasks, the robot should
move toward the desired direction by moving its leg period-
ically. We use expert demonstration containing 1,000 time-

steps for learning on Hopper-v2 environment and 5,000
time-steps for learning on the Walker2d-v2 environment.
Both of the expert demonstrations are generated by a policy
trained by PPO (Schulman et al., 2017).

AntPush-v0: The AntPush-v0 is a navigation/locomotion
task proposed in Nachum et al. (2018), where an Ant robot
is required to navigate into a room that is blocked by a
movable obstacle, as shown in Figure 10. Specifically, the
robot should first navigate to and push away the obstacle
and then go into the blocked room. For better comparing the
learning performance, we slightly extend the original binary
reward as rt = −∆‖post − tar‖22 + 100× 1post=tar where
pos is the position of the robot and tar is the location of the
blocked room. We use expert demonstrations containing
50,000 time-steps for learning in this environment, where
the policy is trained with DAC (Zhang & Whiteson, 2019)
regarding our modified reward.

CloseMicrowave2: The Closemicrowave2 is a more chal-
lenging robot operation environment in RLBench (James
et al., 2020). A 6-DoF robot arm with a gripper is re-
quired to reach and close the door of a microwave by
controlling the increments on joint positions of the robot
arm, as shown in Figure 10. The reward is defined as
rt = −∆θt + 100 × 1θt=0, where θ denotes the rotation
angle of the door, We use expert demonstrations containing
1,000 time-steps for learning in this environment generated
by a handcrafted feedback controller.

5.2. Comparative Evaluations

To illustrate the effectiveness of the proposed method, we
contrast several popular imitation learning baselines, in-
cluding: 1) supervised Behavior Cloning (BC) (Pomer-
leau, 1988) that do not contain hierarchical structure or self-
exploration; 2) GAIL (Ho & Ermon, 2016) that uses self-
exploration without hierarchical structure; 3) Hierarchical
Behavioral Cloning (H-BC) (Zhang & Paschalidis, 2020),
which builds upon the Option structure, but optimizing both
the high- and low-level policies by directly maximizing
the probability of the observed expert trajectories without
any self-exploration. This baseline can also be regarded as
optimizing Equation 9 with forward-backward messages;
4) a variant of GAIL, denoted as GAIL-HRL that updates
hierarchical policies according to Equation 3, where the
immediate imitation reward rt = − logDθ′(st, at) is used
instead. GAIL-HRL can be regarded as a simplified version
of our Option-GAIL without using options in occupancy
measurement matching, and it is designed for justifying the
necessity of involving options during the whole occupancy
measurement matching procedure.

We employ the same demonstration trajectories, network
structures, and option numbers on each environment for
fair comparisons. Specifically, we allow 4 available op-
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Table 1. Comparative results. All results are measured by the average maximum average reward-sum among different trails.

Hopper-v2 Walker2d-v2 AntPush-v0 CloseMicrowave2

Demos (s, a)× T (R11,R3)× 1k (R17,R6)× 5k (R107,R8)× 50k (R101,R8)× 1k
Demo Reward 3656.17±0.0 5005.80±36.18 116.60±14.07 149.68 ± 16.29

BC 275.93±31.09 589.17±90.81 4.60±2.72 26.03±2.33
GAIL 535.29±7.19 2787.87±2234.46 54.82±4.81 39.14±12.88

H-BC 970.91±72.69 3093.56±107.11 89.23±1.37 89.54±15.44
GAIL-HRL 3697.40±1.14 3687.63±982.99 20.53±6.89 56.95±25.74

Ours 3700.42±1.70 4836.85±100.09 95.00±2.70 100.74±21.33
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Exploration Step

AntPush-v0

Exploration Step

CloseMicrowave2

Figure 3. comparison of learning performance on four environments. The environments and the task designs are illustrated on the top
of the figure with more details provided in § 5.1. We compare the maximum average reward-sums vs. exploration steps on different
environments. The solid line indicates the average performance among several trials under different random seeds, while the shade
indicates the range of the maximum average reward-sums over different trials.

tion classes for all environments, a Multi-Layer Percep-
tion(MLP) with hidden size (64, 64) to implement the poli-
cies of both levels on Hopper-v2, Walker2d-v2, AntPush-v0,
and (128, 128) on Closemicrowave2; the discriminator is
realized by an MLP with hidden size (256, 256) on all envi-
ronments. For methods that do not use self-exploration, we
train the policy for 100 epochs and then evaluate it by aver-
age reward-sums; for methods that rely on self-exploration,
we update the policy and record the average reward-sum ev-
ery 4096 environmental steps, and record maximum average
reward-sums over the whole training period. The evaluation
results are displayed in Figure 10.

Obviously, our method gains faster convergence speed and
better eventual performance than all baselines in general, as
illustrated in Figure 10. For example, on CloseMicrowave2,
which is clearly a long-horizon task, our Option-GAIL con-
verges to a remarkably larger reward than all others. Be-
sides, by introducing the option-based hierarchical structure,
Option-GAIL, H-BC and GAIL-HRL are superior to the
counterparts that use single-level policy, namely, BC and
GAIL. When demonstrations are limited, for instance, on
Hopper-v2, Walker2d-v2, and Closemicrowave2, GAIL-like

Demo Sample

O
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s

GA
IL
-H
RL

t t

Figure 4. Visualization of the options activated at each step,
learned respectively by our proposed method (blue) and GAIL-
HRL (gray) on Walker2d-v2. ’Demo’ denotes the options inferred
from the expert, and ’Sample’ denotes the options used by agent
when doing self-explorations. The effectiveness of our proposed
method on regularizing the option switching is obvious by com-
paring the consistent switching tendencies between Demo and
Sample.
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Figure 5. Visualization of the state-action and options on Hopper-
v2 environment by t-SNE (Maaten & Hinton, 2008). The dots and
squares in the figure indicate the state-action pairs generated by
agent and expert on each time step, respectively, and the gray lines
connect time-adjacent points. The color indicates the option acti-
vated at each time-step. Arrows point to the miss-matched option
switching behaviors between agent and expert demonstration by
GAIL-HRL.

methods including Option-GAIL and GAIL-HRL outper-
form their BC-like counterpart H-BC, probably thanks to
the reduction of compounding errors by self-explorations.
On AntPush-v0, the advantage of our method over H-BC is
reduced. We conjecture this is because H-BC is data-hungry,
and it can become better when sufficient demonstrations are
fed. Comparing with GAIL, with the help of hierarchical
modeling, our method can successfully imitate the behavior
of the expert with fewer self-explorations.

To examine if our proposed method actually regularizes
the options switching between expert and agent, Figure 9
illustrates the options including that are inferred from expert
and that generated by agent on Walker2d-v2 with more
examples deferred to Appendix. It is observed in our method
that the expert’s options are consistent with the agent’s,
while for GAIL-HRL, a dramatic conflict exists between
expert and agent. This result confirms the benefit of our
method since we explicitly minimize the discrepancy of the
option-extended occupancy measurement between expert
and agent in Equation 5.

5.3. Ablations and Analysis

In this section, we perform an in-depth analysis on each
component of our model.

The necessity of using option-extended occupancy: We
geometrically assess the difference between our Option-
GAIL and GAIL-HRL on Walker2d-v2. To do so, we visu-
alize the trajectories of the expert (squares) and the agent
(dots) as well as their options (color) at each time step.
Different colors indicate the different options used by the
low-policy, and the expert’s options are inferred with the
agent’s policy. The visualizations in Figure 5 read that the
agent’s trajectory by Option-GAIL almost overlaps with
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Figure 6. Ablations on individual components of our proposed
method. The curve on the left side compares the maximum aver-
age reward-sum within a given range of exploration steps. The
options used by agent and inferred from expert are presented one
the right side.

the demonstration, whereas the one by GAIL-HRL some-
times tracks a wrong direction with respect to the expert.
Moreover, in Option-GAIL, the options of the expert and
agent always switch collaboratively with each other, while
GAIL-HRL occasionally derives inconsistent options (high-
lighted by an arrow) between the expert and agent. This
phenomenon once again verifies the necessity of performing
the option-extended occupancy measurement matching in
Equation 5. If otherwise conducting the occupancy measure-
ment matching in Equation 3, it will give rise to ambiguities
on the learned policies and eventually affect the learning
performance.

Ablations on individual components: To verify the ratio-
nality of the model design, we test different variants of our
method in Figure 6.

1) Random o. In this case, we generate the expert’s options
by random without option inference. As observed, the ran-
dom options mislead policy learning and thus yield worse
performance. We further display the option switching in
the right sub-figure in Figure 6. The high-level policy tends
to be conservative on switching since the sampling options
always keep unchanged, making our model less expressive
to fit the expert’s hierarchical policy.

2) No ot−1. we simply omit the ot−1 in Equation 6 and
implement the discriminator with only (st, at, ot). Clearly,
without the option information from the last step, the high-
level policy is not fully regularized and cannot capture the
option dynamics, thereby delivering a performance drop
compared to the full-option version.

3) Pretrain πH . We pre-train the high-level policy using
H-BC for 50 epochs and then fix it during the subsequent
learning procedure, which can be regarded as a version of
the two-stage method by Sharma et al. (2018). Such ablation
explains it is indeed demanded to simultaneously learn the
high- and low-level policies end-to-end by examining the
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results in Figure 6. In the optimization perspective, the
two-level policies are coupled with each other and will be
improved better under an alternative training fashion.

In summary, all the results here support the optimal choice
of our design.

|O|=6

|O|=2

|O|=4|O|=3

|O|=5

Exploration Step

Average Reward on Hopper-v2

Figure 7. Ablations on the total number of available option classes.
Left: how different value of |o| influences the maximum average
reward-sum within a given range of exploration steps on Hopper-
v2 environment. Right: actual option transition for different |o|.

Ablations on the number of available option classes:
Throughout our above experiments, we set the number of
option classes |o| = 4 and find it works generally. In fact,
changing |o| does not essentially change our performance if
|o| is sufficiently large, as our algorithm will automatically
inactivate redundant options (similar sub-task switching will
be clustered into the same option class). For illustrating such
robustness, we evaluate our method with |o| ∈ {2 · · · 6} on
the Hopper-v2 environment. As observed from Figure7,
when |o| ≥ 3, all variants share similar convergence behav-
ior and option transition: the number of activated options is
observed as 3 for all cases. When |o| ≥ 2, the convergence
becomes worse, probably due to its less expressivity.

6. Discussion and Conclusion
In this paper, we have presented Option-GAIL, a
theoretically-grounded framework that integrates hierarchi-
cal modeling with option occupancy measurement matching.
We then provide an EM-like algorithm for training the poli-
cies of Option-GAIL with a provable guaranteed training
convergence. Comparing to existing HIL methods, Option-
GAIL can regularize both the high- and low-level policies
to better fit the hierarchical behavior of the expert. Experi-
ments on robotic locomotion and manipulation benchmarks
demonstrate the effectiveness of the proposed Option-GAIL
over other counterparts; Option-GAIL works well particu-
larly for the tasks consisting of evidently separable sub-tasks.
Our method is generally powerful and can be enhanced by
absorbing external knowledge. For example, it could be a
future work direction to consider a long-horizon plan as the
prior knowledge when inferring options.
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A. Appendix
A.1. Proofs for Propositions and Theorems

Here we provide the proofs for the propositions and theorems used in our Option-GAIL.

A.1.1. PROOF FOR OONE-STEP = O

According to Assumption 1.1, an option can be activated at any state, thus the intra-option policy πo(a|s), break policy
βo′(s) and inter-option policy πO(o|s) are all well-defined on any s ∈ S,∀o ∈ O. This suggests that πL(a|s, o) ≡ πo(a|s)
holds over all options on any state. For βo′(s), with Assumption 1.2, we have βo′(s) = 1− πH(o′|s, o′) and for πO(o|s)

we have πO(o|s) = πH(o|s,o′)∑
o 6=o′ πH(o|s,o′)

∣∣∣∣
∀o′ 6=o

=
∑
o′ 6=o πH(o|s,o′)∑

o′ 6=o
∑
o 6=o′ πH(o|s,o′) . Also, with o−1 ≡ #, it can be directly found that

µ̃0(s, o) = µ̃0(s, o = #) ≡ µ0(s). Since S,A, Ras , P as,s′ , γ are all defined the same between Oone-step and O, we can get
thatOone-step = O holds under Assumption 1, and there exists an one-to-one mapping between

(
πH(o|s, o′), πL(a|s, o)

)
and(

πo(a|s), βo′(s), πO(o|s)
)
. �

Combining with Theorem 1, this equivalency also suggests:

ρπ̃(s, a, o, o′) = ρπ̃?(s, a, o, o′)⇔ π̃ = π̃? ⇔
(
πo(a|s), πO(o|s), βo′(s)

)
=
(
π?o(a|s), π?O(o|s), β?o′(s)

)
. (11)

A.1.2. PROOF FOR THEOREM 1

The proof of Theorem 1 can be derived similar as that from Syed et al. (2008) by defining an augmented MDP with options:
s̃t

.
= (st, ot−1) ∈ S×O+, ãt

.
= (at, o

A
t ) ∈ A×O, π̃(ãt|s̃t)

.
= πL(at|st, oAt )πH(oAt |st, ot−1), P̃ ãts̃t,s̃t+1

.
= P atst,st+1

1ot=oAt ,
where we denote ot used in ãt as oAt for better distinguish from the option chosen in s̃t+1, despite they should actually be
the same.
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Figure 8. Illustration of the Bellman Flow on augmented MDP with options.

With the sugmented MDP, we can rewrite:

ρ(s̃, ã)
.
= ρ(s, a, o, o′)

= πL(a|s, o)πL(o|s, o′)

µ̃0(s, o′) + γ
∑

s′,a′,o′′

ρ(s′, a′, o′, o′′)P a
′

s′,s

 (12)

= π̃(ã|s̃)

µ̃0 + γ
∑
s̃′,ã′

ρ(s̃′, ã′)P̃ ã
′

s̃′,s̃


and construct a π̃-specific Bellman Flow constraint similar as that introduced by Syed et al. (2008):

ρ(s̃, ã) = π̃(ã|s̃)

µ̃0(s̃) + γ
∑
s̃′,ã′

ρ(s̃′, ã′)P̃ ã
′

s̃′,s̃

 (13)

ρ(s̃, ã) ≥ 0. (14)
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Now we build the relation between the option-occupancy measurement ρπ̃(s̃, ã) and the policy π̃(ã|s̃).

Lemma 1 The option-occupancy measurement of π̃ which is defined as ρπ̃(s̃, ã) = E
[∑∞

t=0 γ
t1(s̃t=s̃,ãt=ã)

]
satisfies the

π̃-specific Bellman Flow constraint in Equation 13-14.

proof: it can be directly find that Equation 14 is always satisfied as ρπ̃(s̃, ã) = E
[∑∞

t=0 γ
t1(s̃t=s̃,ãt=ã)

]
≥ 0 always holds,

we now verify the constraint in Equation 13:

ρπ̃(s̃, ã) = E

 ∞∑
t=0

γt1(s̃t=s̃,ãt=ã)

 =

∞∑
t=0

γtP (s̃t = s̃, ãt = ã) (15)

= π̃(ã|s̃)µ̃0(s̃) +

∞∑
t=1

γtP (s̃t = s̃, ãt = ã) (16)

= π̃(ã|s̃)µ̃0(s̃) +

∞∑
t=1

γt
∑
s̃′,ã′

P (s̃t = s̃, ãt = ã, s̃t−1 = s̃′, ãt−1 = ã′) (17)

= π̃(ã|s̃)

µ̃0(s̃) +

∞∑
t=1

γt
∑
s̃′,ã′

P̃ ã
′

s̃′,s̃P (s̃t−1 = s̃′, ãt−1 = ã′)

 (18)

= π̃(ã|s̃)

µ̃0(s̃) + γ
∑
s̃′,ã′

P̃ ã
′

s̃′,s̃

∞∑
t=0

γtP (s̃t = s̃′, ãt = ã′)

 (19)

= π̃(ã|s̃)

µ̃0(s̃) + γ
∑
s̃′,ã′

P̃ ã
′

s̃′,s̃Eπ̃

 ∞∑
t=0

γt1(s̃t=s̃′,ãt=ã′)


 (20)

= π̃(ã|s̃)

µ̃0(s̃) + γ
∑
s̃′,ã′

ρπ̃(s̃′, ã′)P̃ ã
′

s̃′,s̃

 � (21)

Lemma 2 The function that satisfies the π̃-specific Bellman Flow constraint in Equation 13-14 is unique.

proof: we first define an operator for policy π̃: T π̃ : R|S×O
+|×|A×O| 7→ R|S×O

+|×|A×O| for any function f ∈
R|S×O

+|×|A×O|:
(
T π̃f

)
(s̃, ã)

.
= π̃(ã|s̃)

(
µ̃0(s̃) + γ

∑
s̃′,ã′ f(s̃′, ã′)P̃ ã

′

s̃′,s̃

)
, then for any two functions ρ1(s̃, ã) ≥

0, ρ2(s̃, ã) ≥ 0 satisfy ρ1 = T π̃ρ1, ρ2 = T π̃ρ2, we have:∑
s̃,ã

|ρ1 − ρ2| (s̃, ã) =
∑
s̃,ã

∣∣∣T π̃ρ1 − T π̃ρ2∣∣∣ (s̃′, ã′) (22)

=
∑
s̃,ã

∣∣∣∣∣∣π̃(ã|s̃)γ
∑
s̃′,ã′

P̃ ã
′

s̃′,s̃ (ρ1 − ρ2) (s̃′, ã′)

∣∣∣∣∣∣ = γ
∑
s̃,ã

∣∣∣∣∣∣
∑
s̃′,ã′

p(s̃, ã|s̃′, ã′) (ρ1 − ρ2) (s̃′, ã′)

∣∣∣∣∣∣ (23)

≤ γ
∑
s̃,ã

∑
s̃′,ã′

p(s̃, ã|s̃′, ã′) |ρ1 − ρ2| (s̃′, ã′) = γ
∑
s̃′,ã′

|ρ1 − ρ2| (s̃′, ã′) (24)

= γ
∑
s̃,ã

|ρ1 − ρ2| (s̃, ã) (25)

∵
∑
s̃,ã

|ρ1 − ρ2| (s̃, ã) ≥ 0, γ < 1 (26)

∴
∑
s̃,ã

|ρ1 − ρ2| (s̃, ã) = 0⇒ ρ1 = ρ2 � (27)
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Lemma 3 There is a bijection between π̃(ã|s̃) and
(
πH(o|s, o′), πL(a|s, o)

)
, where π̃(ã|s̃) = π̃(a, o|s, o′) =

πL(a|s, o)πH(o|s, o′) and πH(o|s, o′) =
∑
a π̃(a, o|s, o′), πL(a|s, o) = π̃(a,o|s,o′)∑

a π̃(a,o|s,o′)

∣∣∣
∀o′

=
∑
o′ π̃(a,o|s,o

′)∑
a,o′ π̃(a,o|s,o′)

With Lemma 1 and Lemma 2, the proof of Theorem 1 is provided:

proof: For any ρ(s, a, o, o′) = ρ(s̃, ã) ∈ D =
{
ρ(s̃, ã) ≥ 0;

∑
ã ρ(s̃, ã) = µ̃0(s̃) + γ

∑
s̃′,ã′ ρ(s̃′, ã′)P̃ ã

′

s̃′,s̃

}
, and a policy

π̃(ã|s̃) satisfies:

π̃(ã|s̃) =
ρ(s̃, ã)∑
ã ρ(s̃, ã)

=
ρ(s̃, ã)

µ̃0(s̃) + γ
∑
s̃′,ã′ ρ(s̃′, ã′)P̃ ã

′
s̃′,s̃

, . (28)

With Equation 28 ρ should be a solution of Equation 13-14, and with Lemma 1-2, the solution is unique and equals to the
occupancy measurement of π̃. With Lemma 3, ρ is also the unique occupancy measurement of (πH , πL).

On the other hand, If ρπ̃ is the occupancy measurement of π̃, we have:

∑
ã

π̃(ã|s̃) = 1 =

∑
ã ρπ̃(s̃, ã)

µ̃0(s̃) + γ
∑
s̃′,ã′ ρπ̃(s̃′, ã′)P̃ ã

′
s̃′,s̃

, (29)

which indicates that ρπ̃ ∈ D and π̃(a, o|s, o′) = ρπ̃(s,a,o,o
′)∑

a,o ρπ̃(s,a,o,o
′) , also:

πH(o|s, o′) =
∑
a

π̃(a, o|s, o′) =

∑
a ρπ̃(s, a, o, o′)∑
a,o ρπ̃(s, a, o, o′)

(30)

πL(a|s, o) =

∑
o′ π̃(a, o|s, o′)∑
a,o′ π̃(a, o|s, o′)

=

∑
o′ρπ̃(s, a, o, o′)∑
a,o′ ρπ̃(s, a, o, o′)

� (31)

A.1.3. PROOF FOR THEOREM 2

We first adapt the corollary on Ghasemipour et al. (2020) into its option-version.

Lemma 4 Optimizing the f -divergence between ρπ̃ and ρπ̃E equals to perform π̃? = HRL(c?) with c? = HIRLψ(π̃E):
π̃? = HRL ◦ HIRLψ(π̃E) = arg minπ̃ −H(π̃) +Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)
proof: we take similar deviations from that provided by Ghasemipour et al. (2020). Let f be a function defin-
ing a f -divergence and let f? be the convex conjugate of f . Given ρπ̃E and cost functions c(s, a, o, o′) defined
on S × A × O × O+, we can define the cost function regularizer used by our option-based HIRL as ψf (c)

.
=
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Eρπ̃E (s,a,o,o′)

[
f?
(
c(s, a, o, o′)

)
− c(s, a, o, o′)

]
and a similar relation holds:

ψ?f
(
ρπ̃(s, a, o, o′)− ρπ̃E (s, a, o, o′)

)
(32)

= sup
c()̇

 ∑
s,a,o,o′

(ρπ̃ − ρπ̃E )(s, a, o, o′)c(s, a, o, o′)− ψf (c)

 (33)

= sup
c()̇

 ∑
s,a,o,o′

(ρπ̃ − ρπ̃E )(s, a, o, o′)c(s, a, o, o′)

−
∑

s,a,o,o′

ρπ̃E (s, a, o, o′)
(
f?
(
c(s, a, o, o′)

)
− c(s, a, o, o′)

) (34)

= sup
c()̇

 ∑
s,a,o,o′

[
ρπ̃(s, a, o, o′)c(s, a, o, o′)− ρπ̃E (s, a, o, o′)f?

(
c(s, a, o, o′)

)] (35)

= sup
c()̇

[
Eρπ̃

[
c(s, a, o, o′)

]
− Eρπ̃E

[
f?
(
c(s, a, o, o′)

)]]
, let Tω = c (36)

= sup
Tω

[
Eρπ̃

[
Tω(s, a, o, o′)

]
− Eρπ̃E

[
f?
(
Tω(s, a, o, o′)

)]]
(37)

= Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)
, (38)

where π̃? = HRL ◦ HIRLψ(π̃E) = arg minπ̃ −H(π̃) + ψ?f
(
ρπ̃(s, a, o, o′)− ρπ̃E (s, a, o, o′)

)
= arg minπ̃ −H(π̃) +

Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)
. �

Similar as Ghasemipour et al. (2020), we omit the entropy regularizer term in Lemma 4, thus after the optimization in
M-step we have Df

(
ρπ̃n−1(s, a, o, o′)‖ρE(s, a)[pπ̃n(o, o′|s, a)

)
≥ Df

(
ρπ̃n(s, a, o, o′)‖ρE(s, a)pπ̃n(o, o′|s, a)

)
. Now we

are ready for proving Theorem 2:

proof: Since the option of expert is inferred based on the policy π̃n on each optimization step, we separate the expert
option-occupancy measurement estimated with π̃n as: ρπ̃E (s, a, o, o′) = ρE(s, a)pπ̃n(o, o′|s, a). By repeating the definition
of Qn in our main paper, we have

Qn = Epπ̃n−1 (o,o′|s,a)

[
Df

(
ρπ̃n(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)]
(39)

=
∑

s,a,o,o′

ρE(s, a)pπ̃n−1(o, o′|s, a)f

(
ρπ̃n(s, a, o, o′)

ρE(s, a)pπ̃n−1(o, o′|s, a)

)

≥
∑
s,a

ρE(s, a)f

(
ρπ̃n(s, a)

ρE(s, a)

)
(f is convex) (40)

=
∑

s,a,o,o′

ρE(s, a)pπ̃n(o, o′|s, a)f

(
ρπ̃n(s, a, o, o′)

ρE(s, a)pπ̃n(o, o′|s, a)

)
(E-Step)

≥
∑

s,a,o,o′

ρE(s, a)pπ̃n(o, o′|s, a)f

(
ρπ̃n+1(s, a, o, o′)

ρE(s, a)pπ̃n(o, o′|s, a)

)
(M-Step)

= Qn+1. � (41)

With Equation 39, Equation 40 and Equation 41 we can also obtain:

Df

(
ρπ̃n(s, a, o, o′)‖ρE(s, a)pπ̃n(o, o′|s, a)

)
≥ Df

(
ρπ̃n+1(s, a, o, o′)‖ρE(s, a)pπ̃n+1(o, o′|s, a)

)
(42)

⇒ Df

(
ρπ̃n(s, a)‖ρE(s, a)

)
≥ Df

(
ρπ̃n+1(s, a)‖ρE(s, a)

)
(43)
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A.2. Experimental Details and Extra Results

Here we provide more comparative results on several counterparts, as well as the experimental details.2.
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Figure 9. Visualization of the options activated at each step, learned respectively by pretraining and fixing high-level policy(Pretrain,
refers to Directed-info GAIL (Sharma et al., 2018)), Mixer of Expert(MoE, refers to OptionGAN (Henderson et al., 2018)), GAIL-HRL
and our proposed method. ’Demo’ denotes the options inferred from the expert, and ’Sample’ denotes the options used by agent when
doing self-explorations. The effectiveness of our proposed method on regularizing the option switching is obvious by comparing the
consistent switching tendencies between Demo and Sample.

A.2.1. EXTRA RESULTS

Table 2. Comparative results. All results are measured by the average maximum average reward-sum among different trails.

Hopper-v2 Walker2d-v2 AntPush-v0 CloseMicrowave2

Demos (s, a)× T (R11,R3)× 1k (R17,R6)× 5k (R107,R8)× 50k (R101,R8)× 1k
Demo Reward 3656.17±0.0 5005.80±36.18 116.60±14.07 —

GAIL 535.29±7.19 2787.87±2234.46 56.45±3.17 39.14±12.87
Pretrain 436.55±27.74 891.70±100.58 -0.07±1.50 74.34±20.16

MoE 3254.12±446.78 2722.11±2217.80 39.73±37.00 33.33±25.07
GAIL-HRL 3697.40±1.14 3687.63±982.99 20.53±6.90 56.95±25.74

Ours 3700.42±1.70 4836.85±100.09 95.00±2.70 100.74±21.33

A.2.2. EXPERIMENTAL DETAILS

2The source code is provided at Option-GAIL.git. For setting up the environments correctly, please also refer to OpenAI-Gym (Brock-
man et al., 2016) and RLBench (James et al., 2020)

 https://github.com/id9502/Option-GAIL.git
https://gym.openai.com/
https://sites.google.com/view/rlbench
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Figure 10. comparison of learning performance on four environments. We compare the maximum average reward-sums vs. exploration
steps on different environments. The solid line indicates the average performance among several trials under different random seeds,
while the shade indicates the range of the maximum average reward-sums over different trials.

|O| Option-Viterbi / total (s) %

2 0.0938/57.785 0.16%
3 0.0884/90.199 0.10%
4 0.0840/102.00 0.08%
5 0.0938/126.05 0.07%
6 0.1014/142.64 0.07%

Table 3. The computation time of Option-Viterbi comparing with the overall learning time costs

Table 4. Configurations and hyper-parameters

Name Value Name Value

γ 0.99 learning rate 0.0003
λML 0 λMH 0.01

batch size(T) 4096 mini batch size 64


