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ABSTRACT

We study the problem of building an agent that can follow open-ended instructions
in open-world environments. We propose to follow reference videos as instructions,
which offer expressive goal specifications while eliminating the need for expensive
text-gameplay annotations. We implement our agent GROOT in a simple yet
effective encoder-decoder architecture based on causal transformers. We evalu-
ate GROOT against open-world counterparts and human players on a proposed
Minecraft SkillForge benchmark. The Elo ratings clearly show that GROOT is
closing the human-machine gap as well as exhibiting a 70% winning rate over the
best generalist agent baseline. Qualitative analysis of the induced goal space further
demonstrates some interesting emergent properties, including the goal composition
and complex gameplay behavior synthesis.

Figure 1: Through the cultivation of extensive gameplay videos, GROOT has grown a rich set of skill fruits
(number denotes success rate; skills shown above do not mean to be exhaustive; kudos to the anonymous artist).

1 INTRODUCTION

Developing human-level embodied agents that can solve endless tasks in open-world environments,
such as Minecraft (Johnson et al., 2016; Fan et al., 2022), has always been a long-term goal pursued
in AI. Recent works have explored using Large Language Models (LLMs) to generate high-level
plans, which guide the agent to accomplish challenging long-horizon tasks (Wang et al., 2023b;a; Zhu
et al., 2023). However, a major gap between these LLM-based agents and generalist agents that can
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complete endless amounts of tasks is the capability of their low-level controllers, which map the plans
to motor commands. Recently developed controllers are only capable of completing a predefined
and narrow set of programmatic tasks (Lin et al., 2021; Baker et al., 2022; Cai et al., 2023), which
hinders LLM-based planning agents from unleashing their full potential. We attribute the limitation
of these low-level controllers to how the goal is specified. Specifically, existing controllers use task
indicator (Yu et al., 2019), future outcome (Chen et al., 2021; Lifshitz et al., 2023), and language
(Brohan et al., 2022) to represent the goal. While it is easy to learn a controller with some of these
goal specifications, they may not be expressive enough for diverse tasks. Taking future outcome
goals as an example, an image of a desired house clearly lacks procedural information on how the
house was built. One exception is language, but learning a controller that can receive language
goals is prohibitively expensive as it requires a huge number of trajectory-text pairs with text that
precisely depicts the full details of the gameplay, therefore preventing them from scaling up to more
open-ended tasks.

Having observed the limitations of goal specification in the prior works, this paper seeks to find a
balance between the capacity of goal specification and the cost of controller learning. Concretely,
we propose to specify the goal as a reference gameplay video clip. While such video instruction is
indeed expressive, there are two challenges: 1) How can the controller understand the actual goal
being specified as the video itself can be ambiguous, i.e., a goal space or video instruction encoder
has to be learned; 2) How to ultimately map such goal to actual motor commands? To this end, we
introduce a learning framework that simultaneously produces a goal space and a video instruction
following controller from gameplay videos. The fundamental idea is casting the problem as future
state prediction based on past observations:

• The predicting model needs to identify which goal is being pursued from the past observations,
which requires a good goal space (induced by a video instruction encoder);

• Since the transition dynamics model is fixed, a policy that maps both the state and the recognized
goal to action is also needed by the predicting model when rolling the future state predictions.

Effectively, this results in the goal space and control policy we need. We introduce a variational
learning objective for this problem, which leads to a combination of a cloning loss and a KL
regularization loss. Based on this framework, we implement GROOT, an agent with an encoder-
decoder architecture to solve open-ended Minecraft tasks by following video instructions. The video
encoder is a non-causal transformer that extracts the semantic information expressed in the video and
maps it to the latent goal space. The controller policy is a decoder module implemented by a causal
transformer, which decodes the goal information in the latent space and translates it into a sequence
of actions in the given environment states in an autoregressive manner.

To comprehensively evaluate an agent’s mastery of skills, we designed a benchmark called Minecraft
SkillForge. The benchmark covers six common Minecraft task groups: collect, build,
survive, explore, tool, and craft, testing the agent’s abilities in resource collection, struc-
ture building, environmental understanding, and tool usage, in a total of 30 tasks. We calculate
Elo ratings among GROOT, several counterparts, and human players based on human evaluations.
Our experiments showed that GROOT is closing the human-machine gap and outperforms the best
baseline by 150 points (or 70% winning rate) in an Elo tournament system. Our qualitative analysis
of the induced goal space further demonstrates some interesting emergent properties, including the
goal composition and complex gameplay behavior synthesis.

To sum up, our main contributions are as follows:

• Start by maximizing the log-likelihood of future states given past ones, we have discovered the
learning objectives that lead to a good goal space and ultimately the instruction-following controller
from gameplay videos. It provides theoretical guidance for the agent architecture design and model
optimization.

• Based on our proposed learning framework, we implemented a simple yet efficient encoder-
decoder agent based on causal transformers. The encoder is responsible for understanding the goal
information in the video instruction while the decoder as the policy emits motor commands.

• On our newly introduced benchmark, Minecraft SkillForge, GROOT is closing the human-machine
gap and surpassing the state-of-the-art baselines by a large margin in the overall Elo rating compar-
ison. GROOT also exhibits several interesting emergent properties, including goal composition
and complex gameplay behavior synthesis.
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2 PRELIMINARIES AND PROBLEM FORMULATION

Reinforcement Learning (RL) concerns the problem in which an agent interacts with an environment at
discrete time steps, aiming to maximize its expected cumulative reward (Mnih et al., 2015; Schulman
et al., 2017; Espeholt et al., 2018). Specifically, the environment is defined as a Markov Decision
Process (MDP) ⟨S,A,R,P, d0⟩, where S is the state space,A is the action space,R : S×A → R is
the reward function, P : S ×A → S is the transition dynamics, and d0 is the initial state distribution.
Our goal is to learn a policy π(a|s) that maximizes the expected cumulative reward E[

∑∞
t=0 γ

trt],
where γ ∈ (0, 1] is a discount factor.

In goal-conditioned RL (GCRL) tasks, we are additionally provided with a goal g ∈ G (Andrychowicz
et al., 2017; Ding et al., 2019; Liu et al., 2022; Cai et al., 2023; Jing et al., 2021; 2020; Yang et al.,
2019). And the task becomes learning a goal-conditioned policy π(a|s, g) that maximizes the
expected return E[

∑∞
t=0 γ

trgt ], where rgt is the goal-specific reward achieved at time step t. Apart
from being a new type of RL task, GCRL has been widely studied as a pre-training stage toward
conquering more challenging environments/tasks (Aytar et al., 2018b; Baker et al., 2022; Zhang et al.,
2022). Specifically, suppose we are provided with a good goal-condition policy, the goal can be
viewed as a meta-action that drives the agent to accomplish various sub-tasks, which significantly
simplifies tasks that require an extended horizon to accomplish. Further, when equipped with goal
planners, we can achieve zero- or few-shot learning on compositional tasks that are beyond the reach
of RL algorithms (Huang et al., 2022; Wang et al., 2023b;a; Zhu et al., 2023; Gong et al., 2023).

At the heart of leveraging such benefits, a key requirement is to have a properly-defined goal space
that (i) has a wide coverage of common tasks/behaviors, and (ii) succinctly describes the task without
including unnecessary information about the state. Many prior works establish goal spaces using
guidance from other modalities such as language (Hong et al., 2020; Stone et al., 2023; Cai et al.,
2023) or code (Wang et al., 2023a; Huang et al., 2023). While effective, the requirement on large-scale
trajectory data paired with this auxiliary information could be hard to fulfill in practice. Instead,
this paper studies the problem of simultaneously learning a rich and coherent goal space and the
corresponding goal-conditioned policy, given a pre-trained inverse dynamic model and raw gameplay
videos, i.e., sequences of states {s(i)0:T }i collected using unknown policies.

3 GOAL SPACE DISCOVERY VIA FUTURE STATE PREDICTION

This section explains our learning framework: discovering a “good” goal space as well as a video
instruction following the controller through the task of predicting future states given previous ones.
We start with an illustrative example in Minecraft (Johnson et al., 2016). Imagine that an agent is
standing inside a grassland holding an axe that can be used to chop the tree in front of them. Suppose
in the gameplay video, players either go straight to chop the tree or bypass it to explore the territory.
In order to predict future frames, it is sufficient to know (i) which goal (chop tree or bypass tree) is
being pursued by the agent, and (ii) what will happen if the agent chooses a particular option (i.e.,
transition dynamics). Apart from the latter information that is irrelevant to the past observations, we
only need to capture the goal information, i.e., whether the agent decides to chop the tree or bypass the
tree. Therefore, the task of establishing a comprehensive yet succinct goal space can be interpreted as
predicting future states while conditioning on the transition dynamics of the environment.

Formally, our learning objective is to maximize the log-likelihood of future states given past ones:
log pθ(st+1:T |s0:t). Define g as a latent variable conditioned on past states (think of it as the potential
goals the agent is pursuing given past states), the evidence lower-bound of the objective given
variational posterior qϕ(g|s0:T ) is the following (see Appendix A for derivations):

log pθ(st+1:T |s0:t) = log
∑
g

pθ(st+1:T , g|s0:t)

≥ Eg∼qϕ(·|s0:T ) [log pθ(st+1:T |s0:t, g)]−DKL (qϕ(g|s0:T ) ∥ pθ(g|s0:t)) ,

where DKL(·∥·) denotes the KL-divergence. Next, we break down the first term (i.e.,
pθ(st+1:T |s0:t, g)) into components contributed by the (unknown) goal-conditioned policy πθ(a|s, g)
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Figure 2: GROOT agent architecture. Left: In the training stage, a video encoder (non-causal transformer)
learns to extract the semantic meaning and transfer the video (state sequence) into the goal embedding space. A
goal-conditioned policy (causal transformer) is learned to predict actions following the given instructions. We
learn the agent using behavior cloning under a KL constraint. Right: During inference, a reference video is
passed into the encoder to generate the goal embeddings that drive the policy to interact with the environment.

and the transition dynamics pθ(st+1|s0:t, at) :

log pθ(st+1:T |s0:t, g) =
T∑

τ=t

log
∑
aτ

πθ(aτ |s0:τ , g) · pθ(sτ+1|s0:τ , aτ )

≥
T∑

τ=t

Eaτ∼pθ(aτ |s0:τ+1)

[
log πθ(aτ |s0:τ , g) + C

]
,

where the constant C contains terms that depend solely on the environment dynamics and are
irrelevant to what we want to learn (i.e., the goal space and the goal-conditioned policy). Bring it
back to the original objective, we have

log p(st+1:T |s0:t) ≥
T−1∑
τ=t

Eg∼qϕ(·|s0:T ),aτ∼pθ(·|s0:τ+1) [log πθ(aτ |s0:τ , g)]︸ ︷︷ ︸
behaviour cloning

−DKL (qϕ(g|s0:T ) ∥ pθ(g|s0:t))︸ ︷︷ ︸
goal space constraint (KL regularization)

,

where qϕ(·|s0:T ) is implemented as a video encoder that maps the whole state sequence into the
latent goal space. pθ(·|s0:τ+1) is the inverse dynamic model (IDM) that predicts actions required to
achieve a desired change in the states, which is usually a pre-trained model, details are in Appendix C.
Thus, the objective can be explained as jointly learning a video encoder and a goal-controller policy
through behavior cloning under succinct goal space constraints.

4 GROOT ARCHITECTURE DESIGN AND TRAINING STRATEGY

This section illustrates how to create an agent (we call it GROOT) that can understand the semantic
meaning of a reference video and interact with the environment based on the aforementioned learning
framework. According to the discussion in Section 3, the learnable parts of GROOT include the
video encoder and the goal-conditioned policy. Recently, Transformer (Vaswani et al., 2017) has
demonstrated effectiveness in solving sequential decision-making problems (Parisotto et al., 2019;
Chen et al., 2021; Brohan et al., 2022). Motivated by this, we implement GROOT with transformer-
based encoder-decoder architecture, as shown in Figure 2.

4.1 VIDEO ENCODER

The video encoder includes a Convolutional Neural Network (CNN) to extract spatial information
from image states s1:T and a non-causal transformer to capture temporal information from videos.
Specifically, we use a CNN backbone to extract visual embeddings {x1:T } for all frames. Additionally,
motivated by Devlin et al. (2019); Dosovitskiy et al. (2020), we construct a set of learnable embeddings
(or summary tokens), represented as {c1:N}, to capture the semantic information present in the video.
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The visual embeddings and summary tokens are passed to a non-causal transformer, resulting in the
output corresponding to the summary tokens as {ĉ1:N}

x1:T ← Backbone(s1:T ),

ĉ1:N ← Transformer([x1:T , c1:N ]).
(1)

Similar to VAE (Kingma & Welling, 2013), we assume that the latent goal space follows a Gaussian
distribution, hence we use two fully connected layers, µ(·) and σ(·), to generate the mean and
standard deviation of the distribution, respectively. During training, we use the reparameterization
trick to sample a set of embeddings {g1:N} from the distribution, where gt ∼ N (µ(ĉt), σ(ĉt)).
During inference, we use the mean of the distribution as the goal embeddings, i.e. gt ← µ(ĉt).

4.2 DECODER AS POLICY

To introduce our policy module, we start with VPT (Baker et al., 2022), a Minecraft foundation
model trained with standard behavioral cloning. It is built on Transformer-XL (Dai et al., 2019) that
can leverage long-horizon historical states and predict the next action seeing the current observation.
However, the vanilla VPT architecture does not support instruction input. To condition the policy
on goal embeddings, we draw the inspiration from Flamingo (Alayrac et al., 2022), that is, to insert
gated cross-attention dense layers into every Transformer-XL block. The keys and values in these
layers are obtained from goal embeddings, while the queries are derived from the environment states

x̂
(l)
1:t ← GatedXATTN(kv = g1:N , q = x

(l−1)
1:t ; θl),

x
(l)
1:t ← TransformerXL(qkv = x̂

(l)
1:t; θl),

ât ← FeedForward(x(M)
t ),

(2)

where the policy reuses the visual embeddings extracted by the video encoder, i.e., x(0)
1:t = x1:t, the

policy consists of M transformer blocks, θl is the parameter of l-th block, ât is the predicted action.
Since our goal space contains information about how to complete a task that is richer than previous
language-conditioned policy (Cai et al., 2023; Lifshitz et al., 2023), the cross-attention mechanism is
necessary. It allows the GROOT to query the task progress from instruction information based on
past states, and then perform corresponding behaviors to complete the remaining progress.

4.3 TRAINING AND INFERENCE

The training dataset can be a mixture of Minecraft gameplay videos and offline trajectories. For
those videos without actions, an inverse dynamic model (Baker et al., 2022) can be used to generate
approximate actions. Limited by the computation resources, we truncated all the trajectories into
segments with a fixed length of T without using any prior. We denote the final dataset as D =
{(x1:T , a1:T )}M , where M is the number of trajectories. We train GROOT in a fully self-supervised
manner while the training process can be viewed as self-imitating, that is, training GROOT jointly
using behavioral cloning and KL divergence loss

L(θ, ϕ) = E(s,a)∼D

[∑
t

− log πθ(at|s1:t, g) + λKL

∑
τ

DKL (qϕ(g|s0:T ) ∥ pθ(g|s0:τ ))

]
, (3)

where λKL is the tradeoff coefficient, qϕ is a posterior visual encoder, pθ is a prior video encoder
with the same architecture, g ∼ qϕ(·|s0:T ). More details are in the Appendix D.

5 RESULT

5.1 PERFORMANCE ON MASTERING MINECRAFT SKILLS

Minecraft SkillForge Benchmark. In order to comprehensively evaluate the mastery of tasks by
agents in Minecraft, we created a diverse benchmark called Minecraft SkillForge. It covers 30
tasks from 6 major categories of representative skills in Minecraft, including collect, explore,
craft, tool, survive, and build. For example, the task “dig three down and fill one up” in
the build category asks the agent to first dig three blocks of dirt, then use the dirt to fill the space
above; The task of “building a snow golem” ( ) requires the agent to sequentially stack 2 snow
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(a) Elo Rating Comparison (b) Winning Rate of GROOT vs. Baselines (c) Success Rate Comparison

Figure 3: Results on Minecraft SkillForge benchmark. Left: Tournament evaluation of GROOT assessed
by human players. GROOT performs better than state-of-the-art Minecraft agent STEVE-1. A 150-score gap
corresponds to a 70% probability of winning. Middle: Winning rate of GROOT v.s. other agents on specific task
categories. Colors from red to blue denote a decrease in the winning rate. Apart from the human player, GROOT
surpasses all other baselines. Right: Success rate on 9 representative tasks. GROOT champions process-oriented
tasks, such as dig three down and fill one up ( ) and build snow golems ( ).

blocks ( ) and 1 carved pumpkin ( ). We put the details of this benchmark in the Appendix H.
Apart from some relatively simple or common tasks such as “collect wood” and “hunt animals”, other
tasks require the agent to have the ability to perform multiple steps in succession.

We compare GROOT with the following baselines: (a) VPT (Baker et al., 2022), a foundation model
pre-trained on large-scale YouTube data, with three variants: VPT (fd), VPT(bc), and VPT(rl),
indicating vanilla foundation model, behavior cloning finetuned model, and RL finetuned model;
(b) STEVE-1 (Lifshitz et al., 2023), an instruction-following agent finetuned from VPT, with two
variants: STEVE-1 (visual) and STEVE-1 (text) that receives visual and test instructions. More
details are in Appendix F.1. It is worth noting that GROOT was trained from scratch.

Human Evaluation with Elo Rating. We evaluated the relative strength of agents by running an
internal tournament and reporting their Elo ratings, as in Mnih et al. (2015). Before the tournament,
each agent is required to generate 10 videos of length 600 on each task. Note that, all the reference
videos used by GROOT are generated from another biome to ensure generalization. Additionally,
we also invited 3 experienced players to do these tasks following the same settings. After the video
collection, we asked 10 players to judge the quality of each pair of sampled videos from different
agents. Considering the diversity of tasks, we designed specific evaluation criteria for every task to
measure the quality of rollout trajectories. After 1500 comparisons, the Elo rating converged as in
Figure 3 (left). Although there is a large performance gap compared with human players, GROOT
has significantly surpassed the current state-of-the-art STEVE-1 series and condition-free VPT series
on the overall tasks. Additional details are in Appendix G.

In Figure 3 (middle), we compare GROOT with other baselines in winning rate on six task groups.
We found that except for the performance on craft tasks, where STEVE-1 (visual) outperforms our
model, GROOT achieves state-of-the-art results. In particular, GROOT greatly outperforms other
baselines by a large margin on build and tool. For build, the goal space needs to contain more
detailed procedural information, which is the disadvantage of methods that use future outcomes as
the goal. Moreover, such tasks are distributed sparsely in the dataset, or even absent in the dataset,
which requires the agent to have strong generalization ability. As for craft group, GROOT is not
superior enough, especially on the “crafting table” task. We attribute this to the wide task distribution
in the dataset. Thus the future outcomes can prompt STEVE-1 to achieve a high success rate.

Programmatic Evaluation. To quantitatively compare the performance of the agents, we selected
9 representative tasks out of 30 and reported the success rate of GROOT, STEVE-1 (visual), and
VPT (bc) on these tasks in Figure 3 (right). We found that, based on the success rate on tasks
such as dye and shear sheep( ), enchat sword ( ), smelt food ( ), use bow
( ), sleep ( ), and lead animals ( ), GROOT has already reached a level comparable
to that of human players (100%). However, the success rates for build snow golems ( ) and
build obsidian ( ) tasks are only 60% and 50%. By observing the generated videos, we
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(a)	Random	Initialized (b)	GROOT	w/o	KL (c)	GROOT	w/	KL (d)	Synthesized	Videos

Figure 4: t-SNE visualization of the goal space. Each color corresponds to a specific video category. (Left):
Space of randomly initialized video encoder. All the videos are entangled together. Middle: Space of GROOT
trained with self-supervised learning w/ and w/o KL regularization, respectively. The videos are clustered based
on their semantics. Visualization shows the subtle differences between the two. Right: Synthesized videos using
concatenation manner. The concatenated videos lay on the position between the source videos.

found that GROOT cannot precisely identify the items in Hotbar (such as buckets, lava buckets,
snow blocks, and pumpkin heads), resulting in a low probability of switching to the correct item.
STEVE-1 also has the same problem. This may be due to the current training paradigm lacking
strong supervisory signals at the image level. Future work may introduce auxiliary tasks such as
vision-question answering (VQA) to help alleviate this phenomenon. Details are in Appendix F.3.

5.2 PROPERTIES OF LEARNED GOAL SPACE

This section studies the properties of learned goal space. We used the t-SNE algorithm (van der
Maaten & Hinton, 2008) to visualize the clustering effect of reference videos encoded in goal
space, as in Figure 4. We select 7 kinds of videos, including craft items, combat enemies,
harvest crops, hunt animals, chop trees, trade with villagers, and mine
ores. These videos are sampled from the contractor data (Baker et al., 2022) according to the
meta information (details are in Appendix F.2). Each category contains 1k video segments. As
a control group, in Figure 4 (left), we showed the initial goal space of the video encoder (with a
pre-trained EfficientNet-B0 (Tan & Le, 2019) as the backbone) before training. We found that the
points are entangled together. After being trained on offline trajectories, as in Figure 4 (middle),
it well understands reference videos and clusters them according to their semantics. This proves
that it is efficient to learn behavior-relevant task representations using our self-supervised training
strategy. The clustering effect is slightly better with KL regularization, though the difference is not
very significant. Inevitably, there are still some videos from different categories entangled together.
We attribute this to the possibility of overlap in the performed behaviors of these videos. For example,
chop trees and harvest crops both rely on a sequential of “attack” actions.

Condition on Concatenated Videos. We also study the possibility of conditioning the policy on
concatenated videos. First, we collect 3 kinds of source videos, including chop trees, hunt
animals, and trade with villagers. We randomly sampled two videos from sources
of chop trees and hunt animals, downsampled and concatenated them into a synthetic
video, denoted as [chop trees, hunt animals]. By the same token, we can obtain [hunt
animals, trade with villagers]. We visualize these videos together with the source
videos in Figure 4 (right). We found that the source videos lie far away from each other while the
concatenated videos are distributed between their source videos. Based on this intriguing phenomenon,
we infer that concatenated videos may prompt GROOT to solve both tasks simultaneously. To verify
this, we evaluate GROOT on three kinds of reference videos, i.e., chop trees, hunt animals,
and [chop trees, hunt animals]. We launched GROOT in the forest and in the animal
plains, respectively. The collected wood and killed mobs are reported in Figure 5. We found that
although the concatenated video may not be as effective as raw video in driving an agent to complete
a single task (60% of the performance of raw video), it does possess the ability to drive the agent to
perform multiple tasks. This is an important ability. As discussed in Wang et al. (2023b), sometimes
the high-level planner will propose multiple candidate goals, it will be efficient if the low-level
controller can automatically determine which to accomplish based on the current observation.

Ablation on KL Divergence Loss. To investigate the role of KL loss in training, we evaluated
GROOT (w/ KL) and its variant (w/o KL) on three tasks: collect seagrass ( ), collect
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Figure 7: Results on solving challenging obtain diamond task. The vertical dashed lines represent the
time when a certain item is first obtained. Left: GROOT first dug down to the depth of 12 and then mined
horizontally to obtain diamonds with an average success rate of 16%. Right: STEVE-1 quickly dug down to the
specific depth but struggled to maintain its height.

wood ( ), and use bow ( ). As shown in Figure 6, we found that introducing the constraint of
KL loss improved agent performance by 2× and 1.5× in the first two tasks, whereas there was no
significant effect in the use bow task. This may be because the first two tasks require the agent to
generalize the corresponding skills to different terrains (e.g. locating trees in the environment for
collecting wood and sinking to specific locations for collecting seagrass). Therefore, it puts higher
demands on the agent’s ability to generalize in the goal space, and this is exactly the role played by
the KL loss. The use bow task is relatively simple in comparison because it only requires charging
and shooting the arrow, without considering environmental factors.

5.3 COMBINING SKILLS FOR LONG-HORIZON TASKS

In this section, we explore whether GROOT can combine skills to solve long-horizon tasks, which is
key to its integration with a high-level planner. Taking the task of mining diamonds as an example,
prior knowledge is that diamond ores are generally distributed between the 7th and 14th floors
underground, and the probability of appearing in other depths is almost zero. Therefore, the agent
needs to first dig down to the specified depth (12) and then maintain horizontal mining. To achieve
this, we designed two reference videos, each 128 frames long. One describes the policy of starting
from the surface and digging down, and the other demonstrates the behaviors of horizontal mining.
We show an example in Figure 7 (left). In the beginning, GROOT quickly digs down to the specified
depth and then switches to horizontal mining mode. It maintains the same height for a long time and
found diamonds at 11k steps. In addition, we compared STEVE-1 (visual) under the same setting in
Figure 7 (right). After switching to the horizontal mining prompt, STEVE-1 maintains its height for
a short time before it stuck in the bedrock layer (unbreakable in survival mode), greatly reducing the
probability of finding diamonds. This indicates that our goal space is expressive enough to instruct
the way of mining, and the policy can follow the instructions persistently and reliably. In contrast,
STEVE-1, which relies on future outcomes as a condition, was unable to maintain its depth, despite
attempts at various visual prompts. We conducted 25 experiments each on GROOT and STEVE-1,
with success rates of 16% and 0% for finding diamonds. Additional details are in the Appendix F.4.
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6 RELATED WORKS

Pre-train Policy on Offline Data. Pre-training neural networks on web-scale data has been demon-
strated as an effective training paradigm in Nature Language Processing (Brown et al., 2020) and
Computer Vision (Kirillov et al., 2023). Inspired by this, researchers tried to transfer the success
to the field of decision-making from pre-training visual representations and directly distilling the
policy from offline data. As the former, Aytar et al. (2018a); Bruce et al. (2023) leveraged temporal
information present in videos as the supervision signal to learn visual representations. The representa-
tions are then used to generate intrinsic rewards for boosting downstream policy learning, which still
requires expensive online interactions with the environment. Schmidhuber (2019); Chen et al. (2021)
leveraged scalable offline trajectories to train optimal policy by conditioning it on cumulated rewards.
Laskin et al. (2022) proposed to learn an in-context policy improvement operator that can distill an
RL algorithm in high data efficiency. Reed et al. (2022) learned a multi-task agent Gato by doing
behavior cloning on a large-scale expert dataset. By serializing task data into a flat of sequence, they
use the powerful transformer architecture to model the behavior distribution. However, these methods
either require elaborated reward functions or explicit task definitions. This makes it hard to be applied
to open worlds, where tasks are infinite while rewards are lacking. Another interesting direction is
to use pre-trained language models for reasoning and vision language models for discrimination, to
guide the policy in life-long learning in the environment (Di Palo et al., 2023).

Condition Policy on Goal Space. Researchers have explored many goal modalities, such as language
(Khandelwal et al., 2021), image (Du et al., 2021), and future video (Xie et al., 2023), to build a
controllable policy. Brohan et al. (2022) collected a large-scale dataset of trajectory-text pairs and
trained a transformer policy to follow language instructions. Despite the language being a natural
instruction interface, the cost of collecting paired training data is expensive. As a solution, Majumdar
et al. (2022) sorted to use hindsight relabeling to first train a policy conditioned on the target image,
then aligned text to latent image space, which greatly improves training efficiency. Lifshitz et al.
(2023) moved a big step on this paradigm by replacing the target image with a 16-frame future video
and reformulating the modality alignment problem into training a prior of latent goal given text.

Build Agents in Minecraft. As a challenging open-world environment, Minecraft is attracting an
increasing number of researchers to develop AI agents on it, which can be divided into plan-oriented
(Wang et al., 2023b;a) and control-oriented methods (Baker et al., 2022; Cai et al., 2023; Lifshitz
et al., 2023) based on their emphasis. Plan-oriented agents aim to reason with Minecraft knowledge
and decompose the long-horizon task into sub-tasks followed by calling a low-level controller.
Control-oriented works follow the given instructions and directly interact with the environments
using low-level actions (mouse and keyboard). Baker et al. (2022) pre-trained the first foundation
model VPT in Minecraft using internet-scale videos. Although it achieves the first obtaining diamond
milestone by fine-tuning with RL, it does not support instruction input. Lifshitz et al. (2023) created
the first agent that can solve open-ended tasks by bridging VPT and MineCLIP (Fan et al., 2022).
However, its goal space is not expressive enough and prevents it from solving multi-step tasks.

7 LIMITATIONS AND CONCLUSION

Although GROOT has demonstrated powerful capabilities in expressing open-ended tasks in the
form of video instructions, training such a goal space remains highly challenging. We found that
GROOT is quite sensitive to the selection of reference videos, which we attribute to the fact that
the goal space trained from an unsupervised perspective may not be fully aligned with the human
intention for understanding the semantics of the reference video. Therefore, it would be a promising
research direction in the future to use SFT (supervised fine-tuning, Sanh et al. (2021)) and RLHF
(Ziegler et al., 2019) to align the pre-trained goal space with human preference.

We propose a paradigm for learning to follow instructions by watching gameplay videos. We prove
that video instruction is a good form of goal space that not only expresses open-ended tasks but can
be trained through self-imitation (once the IDM is available to label pseudo actions for raw gameplay
videos). Based on this, we built an encoder-decoder transformer architecture agent named GROOT in
Minecraft. Without collecting any text-video data, GROOT demonstrated extraordinary instruction-
following ability and crowned the Minecraft SkillForge benchmark. Additionally, we also demonstrate
its potential as a planner downstream controller in the challenging obtain diamond task. We
believe that this training paradigm can be generalized in other complex open-world environments.
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