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Abstract

A significant gap remains between today’s visual pattern
recognition models and human-level visual cognition espe-
cially when it comes to few-shot learning and compositional
reasoning of novel concepts. We introduce Bongard-HOI,
a new visual reasoning benchmark that focuses on compo-
sitional learning of human-object interactions (HOIs) from
natural images. It is inspired by two desirable characteris-
tics from the classical Bongard problems (BPs): 1) few-shot
concept learning, and 2) context-dependent reasoning. We
carefully curate the few-shot instances with hard negatives,
where positive and negative images only disagree on ac-
tion labels, making mere recognition of object categories
insufficient to complete our benchmarks. We also design
multiple test sets to systematically study the generalization
of visual learning models, where we vary the overlap of
the HOI concepts between the training and test sets of few-
shot instances, from partial to no overlaps. Bongard-HOI
presents a substantial challenge to today’s visual recog-
nition models. The state-of-the-art HOI detection model
achieves only 62% accuracy on few-shot binary prediction
while even amateur human testers on MTurk have 91% accu-
racy. With the Bongard-HOI benchmark, we hope to further
advance research efforts in visual reasoning, especially in
holistic perception-reasoning systems and better representa-
tion learning. Code is available.1

1. Introduction
In recent years, great strides have been made on vi-

sual recognition benchmarks, such as ImageNet [8] and
COCO [33]. Nonetheless, there remains a considerable gap
between machine-level pattern recognition and human-level
cognitive reasoning. Current image understanding models

*First two authors contributed equally.
1https://github.com/nvlabs/Bongard-HOI
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Labels: positive negative
Figure 1. Illustration of a few-shot learning instance from our
Bongard-HOI benchmark. The positive images in the top left part
follow the visual relationship of riding a bike between the person
and objects while such a relationship does not exist in the negative
examples. Note that an actual problem in Bongard-HOI contains
6 images of positive examples, 6 negative examples, and 1 query
image, which is different from the illustration here.

typically require a large amount of training data yet struggle
to generalize beyond the visual concepts seen during training.
In contrast, humans can reason about new visual concepts
in a compositional manner from just a few examples [21].
To march towards human-level visual cognition, we need to
depart from conventional benchmarks on closed-vocabulary
recognition tasks and aim to systematically examine compo-
sitional and few-shot learning of novel visual concepts.

While existing benchmarks such as miniImageNet [46],
Meta-Dataset [44], and ORBIT [44] have been dedicated

https://github.com/nvlabs/Bongard-HOI


actions with dogs

actions with oranges

Figure 2. Examples of different actions with the same object.
From top to bottom, left to right: washing, walking, and feeding
dogs; eating, squeezing, and peeling oranges. To differentiate these
images, we need compositional understanding on both the actions
and the objects. We exploit this to select hard negatives in Bongard-
HOI: negative images contain the same object as the positives, but
the actions are different.

to studying few-shot visual learning, they focus on recog-
nizing object categories instead of the compositional struc-
tures of visual concepts, e.g., visual relationships. A par-
allel line of research aims at building benchmarks for ab-
stract reasoning by taking inspiration from cognitive science
such as RPM (Raven-style Progressive Matrices) [2, 43] and
Bongard-LOGO [3, 32]. In these benchmarks, a model has
to learn concept induction rules from a few examples and
the concepts are context-dependent in each task. However,
they use simple synthetic images [2, 32] or focus on basic
object-level properties, such as shapes and categories [43].
Our new benchmark: In this paper, we introduce Bongard-
HOI, a new benchmark for compositional visual reasoning
with natural images. It studies human-object interactions
(HOIs) as the visual concepts, requiring explicit composi-
tional reasoning of object-level concepts. Our Bongard-HOI
benchmark inherits two important characteristics of the clas-
sic Bongard problems (BPs) [3]: 1) few-shot binary predic-
tion, where a visual concept needs to be induced from just six
positive and six negative examples and 2) context-dependent
reasoning, where the label of an image may be interpreted
differently under different contexts.

Furthermore, Bongard-HOI upgrades the original BPs
from synthetic graphics to natural images. Our benchmark
contains rich visual stimuli featuring large intra-class vari-
ance, cluttered background, diverse scene layouts, etc. In
Bongard-HOI, a single few-shot binary prediction instance,
referred to as BP, contains a set of six positive images and
a set of six negative images, along with query images (see
Fig. 1 for examples). The task is making binary predictions
on the query images.

We construct the few-shot instances in Bongard-HOI on
top of the HAKE dataset [23, 24]. To encourage the explicit

reasoning of visual relationships, we use hard negatives to
construct few-shot instances. The hard negatives consist of
negatives that contain objects from the same categories as
those contained in the positive sets but with different ac-
tion labels. Fig. 2 presents some examples of these images.
Since both positive and negative examples contain object
instances from the same categories, mere recognition of ob-
ject categories is insufficient to complete the tasks. Rather,
reasoning about visual relationships between person and ob-
jects is required to solve these few-shot binary prediction
problems. The existence of such hard negatives distinguishes
our benchmark from existing visual abstract reasoning coun-
terparts [2, 32, 43]. Comparisons with different benchmarks
can be found in Table 1.

We carefully curate the annotations in HAKE when con-
structing the few-shot instances. Recall the visual concept
contained in the positive images should not appear in any
of the negative ones. Thus, we have to carefully select the
images in both sets. We employ high-quality annotators
from the Amazon Mechanical Turk platform to curate the
test set to further remove ambiguously and wrongly labeled
few-shot instances. In this process, 2.5% of the few-shot
instances in the test set are discarded. We end up with 23K
and 15K few-shot instances in disjoint training and test sets,
respectively.

An important goal of the Bongard-HOI benchmark is to
systematically study the generalization of machine learning
models for real-world visual relationship reasoning. To this
end, we introduce four separate test sets to investigate dif-
ferent types of generalization, depending on whether the
action and object classes are seen in the training set. Fig. 3
illustrates their design. This way, we have full control of the
overlap between the concepts (i.e., HOIs) between training
and test of few-shot instances. It enables us to carefully ex-
amine the generalization of visual learning models. Ideally,
a learning model should be able to generalize beyond the
concepts it has seen during training. Even for unseen HOI
concepts, the model should be able to learn how to induce
the underlying visual relationship from just a few examples.
Establishing baselines: In our experiments, we first ex-
amine the state-of-the-art HOI detection models’ perfor-
mance on this new task, we trained an oracle model with
HOITrans [53] on all the HOI categories, including those
in the test sets of our Bongard-HOI benchmark, and output
binary prediction on the query image via a majority vote
based on HOI detections. Its accuracy is only 62.46% (with
a chance performance of 50%), demonstrating the challenge
of our visual reasoning tasks. We then evaluate state-of-the-
art few-shot learning approaches, including non-episodic and
meta-learning methods. We show that the current learning
models struggle to solve the Bongard-HOI problems. Com-
pared to amateur human testers’ 91.42% overall accuracy,
who have access to a few examples of visual relationships



sit_on bed straddle bicycle hug person wash car

training set · · ·

wash bicyle sit_on bench greet person shear sheep

test set

seen act. seen obj. seen act. unseen obj. unseen act. seen obj. unseen act. unseen obj.
Figure 3. Illustration of our four separate test sets for different types of generalization. We show a few HOI concepts in the training and
test sets in the top and bottom row, respectively. We use the red fonts to denote an object or action class that is available in the training set
and blue fonts indicate those held-on unseen ones in the test set.

before working on solving our problems, the state-of-the-art
few-shot learning model [6] only has 55.82% accuracy.

The results above lead to this question: why do they per-
form so poorly? To this end, we offer a detailed analysis of
the results and propose several conjectures. The first one is a
lack of holistic perception and reasoning systems, since mod-
els that have only good pattern recognition performances, e.g.
HOITrans, are likely to fail on our benchmarks. Moreover,
we believe there is a need for additional representation learn-
ing, e.g. pre-training, since currently we only train on binary
labels of few-shot instances. Nonetheless, we believe much
effort is still needed to further investigate the challenges
brought by our benchmark.

To sum up, this paper makes the following contributions:
• We introduce Bongard-HOI, a new benchmark for few-

shot visual reasoning with human-object interactions, aim-
ing at combining the best of few-shot learning, composi-
tional reasoning, and challenging real-world scenes.

• We carefully curate Bonagrd-HOI with hard negatives,
making mere recognition of object categories insufficient
to complete our tasks. We also introduce multiple test sets
to systematically study different types of generalization.

• We analyze state-of-the-art few-shot learning and HOI de-
tection methods. However, experimental results show their
inability on achieving good results on Bongard-HOI. Our
conjectures suggest future research in models with holistic
perception-reasoning systems and better representations.

2. Bongard-HOI Benchmark
For a few-shot binary prediction instance in Bonagrd-

HOI, it has a set of positive examples P , a set of negative
samples N , and a query image Iq. Images in P depict a
certain visual concept (e.g., ride bicycle in Fig. 1),

while images in N do not. In each task, there are only
six images in both P and N . As a result, a human tester
or machine learning model needs to induce the underlying
concept from just a few examples. Given the query image Iq ,
a binary prediction needs to be made: whether the certain
visual concept depicted in P is available in Iq or not. Later,
we will detail how to construct these few-shot instances.

2.1. Constructing Bongard Problems
Few-shot instances in Bongard-HOI are constructed with

natural images. We choose to use visual relationships as
underlying visual concepts. In our early experiments, we
also studied visual attributes to construct few-shot instances,
for example, color and shape of bird parts [47], facial at-
tributes [27]. But such visual attributes annotations either
require too much domain knowledge for human annotators
or are too noisy to curate. Another option we investigated
is scene graph [18], which is a combination of both visual
relationships and visual attributes. However, there could
be too many convoluted visual concepts in a single image,
resulting in ambiguous few-shot instances.

In this paper, we construct few-shot instances on top of
the HAKE dataset [23, 24] focusing on human-object inter-
actions. It provides unified annotations following the anno-
tation protocol in HICO [4] for a set of datasets widely used
for HOI detection, including HICO [4], V-COCO [10], Open-
Images [19], HCVRD [52], and PIC [25]. HAKE has 80
object categories, which are consistent with the vocabulary
defined in the standard COCO dataset [26]. It also has 117
action labels, leading to 600 human-object relationships2.

Denote a concept c = ⟨s, a, o⟩ as a visual relationship
triplet, where s, a, o are the class labels of subject, ac-
tion, and object, respectively. In this paper, s is always

2Some combinations of objects and actions are infeasible.



Table 1. An overview of different benchmark datasets covering HOI detection, few-shot learning, and abstract visual reasoning. In
the first row, the abbreviation ctx denotes context; generalization types indicates if a benchmark includes multiple test splits to examine
different types of generalization. ∗We consider the concept of object counts as compositional while others such as object attributes and
categories not [43]).

concept
compositional natural few- ctx-dependent hard generalization

#concepts #tasks
concept image shot reasoning negatives types

HAKE [23, 24] HOI ✓ ✓ ✗ ✗ ✓ ✗ 600 122.6K

Omniglot [20] shape ✗ ✗ ✓ ✓ ✗ ✗ 50 1.62K
miniImageNet [46] image label ✗ ✓ ✗ ✓ ✗ ✗ 100 60K
Meta-Dataset [44] image label ✗ ✓ ✓ ✗ ✗ ✗ 4,934 52.8M

ORBIT [30] frame label ✗ ✓ ✓ ✗ ✗ ✗ 486 2.69M

RPM [2] shape ✗ ✗ ✓ ✓ ✗ ✓ 50 11.36M
V-PROM [43] attributes & counts ✓∗ ✓ ✓ ✓ ✗ ✓ 478 235K

Bongard-LOGO [32] shape ✗ ✗ ✓ ✓ ✗ ✓ 627 12K

Bongard-HOI (ours) HOI ✓ ✓ ✓ ✓ ✓ ✓ 242 53K

person. We start with selecting a set of positive images
Ic = {I1, . . . } from HAKE that depict such a relationship.
We also need negative images, where the visual concept c is
not contained by them. In specific, we collect another set of
images Ic̄ with concept c̄ = ⟨s, ā, o⟩, where ā ̸= a, meaning
that we select hard negatives. As a result, images from both
Ic and Ic̄ contain the same categories of objects and the only
differences are the action labels, making it impossible to triv-
ially distinguish positive images from the negatives by doing
visual recognition of object categories only. Rather, detailed
visual reasoning about the interactions of human and objects
are desired. Fig. 2 illustrates the difficulties introduced by
the hard negatives. Finally, as an entire image may contain
multiple HOI instances, we use image regions (crops) around
each HOI instance instead of the original image to ensure
only a single HOI instance is presented in a single image.

Next, we need to sample few-shot instances from the pos-
itive images Ic and the negatives Ic̄. We randomly sample
images to form P , N , and a query image Iq . Two parameters
control the sampling process: M , the number of images in P
and N (M = 6 in Bongard-HOI), and the overlap threshold
τ , indicating the maximum number of overlapped images
between two few-shot instances. We want to sample as many
few-shot instances as possible, but we also need to avoid
significant image overlap between few-shot instances, which
limits the diversity of the data. We end up setting τ = 3 and
τ = 2 for training and test sets, respectively. More details
can be found in the supplementary material.

2.2. Data Curation
Although the HAKE dataset [23, 24] has provided high-

quality annotations, we found that curations are still needed
to construct few-shot instances. Recall, to sample negative
images, we assume a particular action is not depicted in them.
In HAKE, an image region may have multiple action labels.
Naively relying on the provided annotations is problematic
as the action labels are either not manually exclusive or not

exhaustively annotated. We hire high-quality testers on the
Amazon Mechanical Turk (MTurk) platform, who maintain a
good job approval record, to curate existing HOI annotations.
We discuss the data curation process in detail and show
visual examples in detail in the supplementary material.

After the aforementioned data curations, each image re-
gion is assigned to a single action label, describing the most
salient visual relationship. With the curated annotations, ac-
tion labels between a person and objects of a certain category
are mutually exclusive so that we can significantly reduce
the ambiguity when constructing few-shot instances. Finally,
we hire high-quality testers on the MTurk platform to further
remove the ambiguous few-shot instances in the test set. Ev-
ery single few-shot instance is assigned to three independent
testers. We compare their responses with the ground-truth
labels and discard about 2.5% few-shot instances where
none of the three testers correctly classifies the query im-
ages. In the end, we report the accuracy of human testers on
those left unambiguous few-shot instances as a human study
to examine human-level performance on our Bongard-HOI
benchmark, where the average accuracy is 91.42%.

2.3. Generalization Tests
Transferring the knowledge that an agent has seen and

learned is a hallmark of visual intelligence, which is a long-
stand goal for the entire AI community. It is also a core
focus of the Bongard-HOI benchmark. Following [2], we
provide multiple test splits to investigate different types of
generalization, aiming at a systematic understanding of how
the tested models generalize on our benchmark. Specifically,
the visual concept we consider in Bongard-HOI is an HOI
triplet ⟨s, a, o⟩ and we have two variables of freedom: action
a and object o. Therefore, by controlling whether an action
or object is seen during training, we can study generalization
to unseen actions, unseen objects, or a combination of two.
We end up introducing four separate test sets, as shown in
Fig. 3. We provide detailed statistics on our training and test



sets in the supplementary material.
Ideally, after learning from examples of sit_on bed,

a machine learning model can quickly grasp the concept
sit_on bench. More importantly, such a model should
learn how to learn from just a few examples, so that they can
still induce the correct concept (visual relationship) in the
most challenging cases, where both actions and objects are
not seen during training (e.g., shear sheep).

3. Possible Models for Bongard-HOI
There are many possible ways of tackling Bongard-HOI,

such as few-shot learning, conventional HOI detection, etc.
We are particularly interested in investigating few-shot learn-
ing methods, as our benchmark requires the learner to iden-
tify the visual concept with very few samples (positive and
negative images in P and N , respectively). To further im-
prove the few-shot learning methods, we consider encoding
the images with Relation Network [40], aiming at better
compositionality in the learned representations. Finally, we
introduce an oracle model to testify whether Bongard-HOI
can be trivially solved using state-of-the-art HOI detection
models.

3.1. Few-shot Learning in Bongard-HOI
We start with a formal definition of the few-shot learn-

ing problem in Bongard-HOI. Specifically, each task in-
cludes multiple few-shot instance with N = 2 classes
and 2M samples, i.e., the model learns from a training set
S = P∪N = {(IP1 , 1), . . . , (IPM , 1), (IN1 , 0), . . . , (INM , 0)}
and is evaluated on a query image (Iq, yq). Each example
(I, y) includes an image I ∈ RH×W×3 and a class label
y ∈ {0, 1}, indicating whether I contains the visual con-
cepts depicted in P . In Bonagrd-HOI, we set M = 6 as
our default parameter and therefore each few-shot instance
is “2-way, 6-shot”. Following [44], we propose to solve
these few-shot prediction instances with the following two
families of approaches:

Non-episodic methods. In these methods, a simple classi-
fier is trained to map all the images in a few-shot instance
(including images in P , N , and the query image) to the
class of the query. The classifier can be parameterized as a
neural network over some learned image embeddings, i.e.
representations produced by convolutional neural networks
(CNNs). In other words, we view each few-shot instance as a
single training sample (

⋃2M+1
i=1 Ii, yq) rather than a few-shot

instance with multiple training samples (I, y). Our experi-
ments cover two different ways to encode the images: CNN
and Wide Relational Network (WReN) [2, 32].

Meta-learning methods. These methods adopt the episodic
learning setting, i.e., they learn to train a classifier using
2M samples from S and evaluate their trained classifier on
the query (Iq, yq). In general, their objective (also called
meta-objective) is to minimize the prediction error on the

Figure 4. Class-agnostic (objectness) detections. We show the
detections from our class-agonostic detector (in green) and ground-
truth human and object boxes (in red).

query. Different meta-learning methods have their own ways
to build the classifier and optimize the meta-objective. In our
experiments, we consider the following state-of-the-art meth-
ods: 1) ProtoNet [42], a metric-based method; 2) MetaOpt-
Net [22] and ANIL [34], two optimization-based approaches.
Moreover, we also use a strong baseline meta-learning model,
Meta-Baseline [6], which reports competitive results in many
few-shot prediction tasks. We refer readers to the related
papers for more details.

3.1.1 Image Encoding with Relational Network

As mentioned above, representation learning of the input
images can be crucial to the success of few-shot learning
methods on Bongard-HOI. As our benchmark demands learn-
ing compostional concepts (HOIs), simply feeding an image
into a Convolutional Neural Network (CNN) is not optimal.
To this end, we propose to use the Relational Network [40],
which shows promising compositional reasoning accuracy
on a Visual Question Answering (VQA) benchmark [15],
to explicitly encode the compositionality of visual relation-
ships. In specific, the feature representations of the image I
is computed as

RN(I) = fϕ ◦
∑
i,j

gψ (concat(hθ(oi, I), hθ(oj , I))) ,

where oi and oj are two detected objects of the image I ,
provided by ground truth object annotations or a pre-trained
object detector like Faster R-CNN [37]. hθ denotes the
RoI Pooled features of oi from a ResNet backbone [11]
followed by a MLP (multi-layer perceptron) [37], which is
parameterized by θ. gψ and fϕ are two additional MLPs.

A challenge we are facing is the unseen object categories
in the test sets. Since the object detector has to be pre-trained
on a dataset without the unseen object categories, it is likely
to fail on our test set where images could contain objects
belonging to these categories. To tackle this issue, we train a
binary class-agnostic (objectness) detection model instead
to get oi and oj . Class-agnostic object detections are shown
in Fig. 4. As we can see, all objects of interest have been
successfully detected. But at the same time, there are a lot
of other distracting ones, such as the bench and the wagon
in the left image of Fig. 4. This is a unique challenge of



dealing with visual reasoning over real-world images. We
devote discussions to it in the experiment section.

3.2. Oracle
One may wonder if our Bongard-HOI benchmark could

be trivially solved using the state-of-the-art HOI detection
model. To address this concern, we develop an oracle model
resorting to the HOITrans [53], which is based on the Trans-
former model [45] and reports state-of-the-art accuracy on
the HICO [4] and V-COCO [10] benchmarks. In specific,
let’s denote the HOI detections in the P and N as DP and
DN , respectively. DP contains the detections from all of
the images in the P , defined as DP = {cPi }

NP
i=1, where cPi

is a HOI triplet introduced in Section 2.1. NP is the total
number of detections. Note that there may be multiple or
no detections for a single image. Similarly, DN is defined
as DN = {cNi }NN

i=1. According to the property of Bongard-
HOI, the visual concept cP should only appear in the P , not
in the N . We, therefore, compute cP as

cP = majority_vote(DP −DN ),

where − is the set operator for set subtraction. Here we first
exclude the HOIs detected in N from DP , then the majority
of the remaining HOIs will be viewed as the visual concept
cP . Given the detections Dq = {cqi }

Nq

i=1 for the query image
Iq , our prediction y becomes

y =

{
1, if cP ∈ Dq,
0, otherwise.

Discussions of how to deal with the corner cases, e.g.,
majority_vote returns more than 1 concept, Dq is
empty, etc, are provided in the supplementary material. We
illustrate how this model works in Fig. 5, where we show
HOI detections in each image.

We call it our oracle model as it has privileged infor-
mation, i.e., the entire HOI action & object vocabulary, in-
cluding those held-out ones in the test set. As we shall we
in Section 4, such an oracle model still struggles on our
Bongard-HOI benchmark, achieving only 62.46% accuracy
on average, which is far below the human-level performance
of 91.42%. It suggests that our Bongard-HOI benchmark is
not trivial to solve.

4. Experiments
4.1. Implementation Details

We benchmark the models introduced in Section 3 on
Bongard-HOI to test their performance on human-level few-
shot visual reasoning. We use a ResNet50 [11] as an encoder
for the input images. We consider different pre-training
strategies: 1) no pre-training at all (scratch), 2) pre-trained
on the ImageNet dataset with manual labels [8], and 3) lat-
est self-supervised approach [5] pre-trained on ImageNet
but without manual labels. We train an Faster R-CNN [37]

P N

Query images:

Predictions: positive negative
Figure 5. Illustration of our oracle model. We first generate
some detections for all the images using HOITrans [53]. Note that
some images may not have any detection at all. According to the
detections in the P and N , the common concept is eat donut.
As a result, in the bottom row, the first query image is considered to
be positive as its HOI detections contain eat donat. The second
query image is negative. Zoom in for the best view.

class-agnostic objectness detection model on the COCO
dataset [33] using a ResNet101 [11] pre-trained on Ima-
geNet [8] as the backbone. We use the RoIPool opera-
tion [37] to get feature representations for each bounding
box. We also use ground-truth bounding boxes provided
in HAKE [23] as input to diagnose the effectiveness of the
visual perception. In addition to RoIPooled region features,
we also concatenate each bounding box’s normalized co-
ordinates (center and spatial dimensions) as spatial infor-
mation to the Relational Network encoder introduced in
Section 3.1.1.
4.2. Quantitative Results

The quantitative results of different models on our
Bongard-HOI benchmark can be found in Table 2. We
make the following observations: First of all, despite the
overall difficulties brought by our benchmarks, most models
perform worse on the challenging test splits, where actions
and/or object categories are completely unseen during train-
ing. This observation aligns well with our hypothesis, i.e.
existing machine learning approaches can be limited in terms
of generalizing beyond training concepts. It also echos the
findings in Bongard-LOGO [32], a dataset studying a similar
problem with synthetic images. Second, meta-learning ap-
proaches generally tend to perform better than non-episodic
counterparts, which can be on par with or even worse than
random guesses (50% chance). We hypothesize the reason
to be the focus on learning to learn in these methods, which
is essentially required to solve the few-shot instances in



Table 2. Quantitative results on the Bongard-HOI benchmark. All the models use a ResNet50 as the image encoder. For the input of
bounding boxes (bbox), we consider two options: from an object detection model (det) and ground-truth annotations (gt). For the ResNet50
encoder, we experiment with different pre-training strategies: no pre-training at all (scratch), pre-trained on the ImageNet dataset with
manual labels (IN), and state-of-the-art self-supervised approach MoCoV2 [5]. (* denotes that we are unable to get meaningful results; #

indicates that the trained model has a run-time error during the inference stage since the condition of the QP solver can not be satisfied).

bbox pre-train
test set

avg.seen act., seen act., unseen act., unseen act.,
seen obj. unseen obj. seen obj. unseen obj.

CNN-Baseline [32] - scratch 50.03 49.89 49.77 50.01 49.92
WReN-BP [2, 32] - IN 50.31 49.72 49.97 49.01 49.75

ProtoNet* [42] det IN - - - - -
ProtoNet [42] gt IN 58.90 58.77 57.11 58.34 58.28

MetaOptNet# [22] det IN - - - - -
MetaOptNet [22] gt IN 58.60 58.28 58.39 56.59 57.97

ANIL [34] det IN 50.18 50.13 49.81 48.83 49.74
ANIL [34] gt IN 52.73 50.11 49.55 48.19 50.15

Meta-Baseline [6] det scratch 54.61 53.79 54.58 53.94 54.23
Meta-Baseline [6] det MoCoV2 55.23 54.54 54.32 53.11 54.30
Meta-Baseline [6] det IN 56.45 56.02 55.60 55.21 55.82
Meta-Baseline [6] gt IN 58.82 58.75 58.56 57.04 58.30

HOITrans [53] (oracle) - - 59.50 64.38 63.10 62.87 62.46

Human (Amateur) - - 87.21 90.01 93.61 94.85 91.42

the Bongard-HOI benchmark, especially for the challenging
test splits with novel categories. Similar observations have
also been made in Bongard-LOGO. Moreover, some meta-
learning models are distracted by bounding boxes provided
by an object detection model. We will discuss this issue in
the next section.

Surprisingly, the oracle model (HOITrans) also struggles
on our tests with an averaged accuracy of 62.46%, albeit be-
ing trained with direct HOI supervision and all action&object
categories. It suggests a clear gap between the existing HOI
detection datasets, e.g. HAKE [23] and Bongard-HOI, where
the latter one requires capabilities beyond perception, e.g.
HOI recognition. Rather, a model might also need context-
dependent reasoning, learning-to-learn from very few exam-
ples, etc., to perform well on our benchmarks.

Finally, machine learning models still largely fall behind
amateur human testers (e.g., 55.82% of Meta-Baseline vs
91.42%). While we only give human testers a couple of
examples about visual relationships before they start work-
ing on solving Bongard-HOI, they can quickly learn how
to induce visual relationships from just a few examples, re-
porting an average 91.42% accuracy on our Bongard-HOI
benchmark. Particularly, there are no significant differences
for the different subsets of the test set. We hope our findings
will foster more research efforts on closing this gap.

4.3. Discussions
We need holistic perception and reasoning. Our work
suggests that the significant challenges in current visual rea-
soning systems lie in both the reliability of perception and
the intricacy of the reasoning task itself. Models that have
only good pattern recognition performances are likely to
fail on our benchmarks. Rather, an ideal learner needs to
integrate visual perception in natural scenes and detailed cog-
nitive reasoning as a whole. This marks our key motivation
to propose Bongard-HOI as the first step towards studying
these two problems holistically.
Pre-training improves performances. Intuitively, models
for Bongard-HOI might need additional representation learn-
ing, e.g. pre-training, since currently we only train on binary
labels of few-shot instances. We can see from Table 2 that
pre-training is very helpful. Compared to no pre-training,
using either manual labels or self-supervision leads to a
performance boost. In particular, the self-supervised pre-
training [5] does not use any manual labels for supervision.
Yet it can produce better results than learning from scratch.
Visual perception matters in Bongard-HOI. Finally, an
imperfect perception could still be a major obstacle here.
Different from Bongard-LOGO [32] which uses synthetic
shapes instead, Bongard-HOI studies visual reasoning on
natural scenes, which often contain rich visual stimuli, is-
suing such as large intra-class variance and cluttered back-
ground also present challenges to reliable visual perception



on which reasoning is based. In our case, bounding boxes
produced by an object detection model can be inevitably
noisy. Some meta-learning models, including ProtoNet [42],
have difficulties inducing the true visual relationships. For
MetaOptNet [22], although we can finish training, we con-
stantly encounter run-time errors where the condition of the
QP solver is not satisfied during the inference stage. Instead,
when taking clean ground-truth bounding boxes as input, all
of these approaches produce better accuracy. Note that using
ground-truth bounding boxes only serves as an oracle, which
does not indicate the models’ authentic performance.

5. Related Work
Visual relationship detection benchmarks. Various
benchmarks are also dedicated for visual relationship recog-
nition and detection, particularly for human-centric relation-
ships (i.e., HOI). In the seminal work of Visual Genome [18],
scene graph annotations, including relationships of differ-
ent objects, are provided. A subset of the annotations is
used in VRD [28] to focus on visual relationship detection.
In a recent effort, large-scale visual relationships are pro-
vided in the Open Images dataset [19]. HOI, is of particular
interest to understand the interactions of humans and other
objects. A lot of HOI benchmarks, such as HICO [4], COCO-
a [38], vCOCO [10], and HOI-COCO [13], are built on top
of the object categories provided in the COCO dataset [26].
The MECCANO [35] dataset focuses on human-object in-
teractions in egocentric settings and industrial scenarios.
Ambiguous-HOI [24] is part of the HAKE project [23],
where the focus is human activity understanding with a large-
scale knowledge base and visual reasoning.

Although our Bongard-HOI benchmark is built on top of
the dataset HAKE [23], it differs from the existing visual
relationship and HOI benchmarks, since we focus on human-
level cognitive reasoning instead of recognition. To solve
Bongard-HOI, one might not need to explicitly name the
underlying visual relationship but does need to induce the
HOI from a few images and perform context-dependent
reasoning. Our results also suggest that Bongard-HOI cannot
be trivially solved by the state-of-the-art models on these
datasets, e.g. HOITrans [53].

Few-shot and meta learning models. Few-shot learn-
ing aims at learning from a limited number of training
samples [9, 17]. With the goal of extracting the generic
knowledge across tasks and generalizing to a new task us-
ing task-specific information, meta-learning (or learning-
to-learn) [12] becomes one of the leading approaches to
deal with the few-shot learning problems. In general,
meta-learning methods are divided into three categories: 1)
memory-based methods, such as MANN [39] and SNAIL
[31], 2) metric-based methods, such as Matching Net-
works [46] and ProtoNet [42], and 3) optimization-based
methods, such as MetaOptNet [22] and ANIL [34].

These meta-learning methods have been evaluated on sev-
eral commonly used few-shot learning benchmarks, includ-
ing miniImageNet [46] and tieredImageNet [36]. Although
state-of-the-art meta-learning algorithms have achieved ex-
cellent performance on these standard few-shot image clas-
sification benchmarks, whether these approaches can gen-
eralize to tasks where the concepts to learn (in a few-shot
manner) are compositional, e.g. visual relationships rather
than simple object categories is unknown [14, 16]. In other
words, existing benchmarks fail to account for the challeng-
ing problem of generalizing to new compositional concepts
in few-shot learning. Therefore, with a focus on the more
challenging visual concepts of visual relationships, we pro-
pose Bongard-HOI to serve as a new benchmark for the few-
shot learning methods. We believe that our benchmark can
foster the development of new few-shot learning, especially
meta-learning algorithms to achieve better performances on
learning and generalizing with compositional concepts.

Abstract visual reasoning benchmarks. Inspired by cog-
nitive studies, several benchmarks have been built for ab-
stract reasoning, highlighting cognitive abstract reasoning.
Notable examples include compositional question answer-
ing [15, 29], physical reasoning [1, 50], math problems [41],
and general artificial intelligence [7, 49]. The most relevant
to our benchmark are RPM [2,51], its variant with natural im-
ages [43], and Bongard problems with synthetic shapes [32]
and physical problems [48]. While most of them consider
synthetic images [2, 32, 48], our Bongard-HOI benchmark
studies cognitive reasoning on natural images, which impose
unique challenges due to the difficulty of visual perception.
Moreover, we use human-object interaction as the underlying
concepts to construct few-shot instances, which require ex-
plicit compositional concept learning in a few-shot manner,
compared to the object categories and shapes [43]. More-
over, the existence of hard negatives in the few-shot instances
makes our benchmark more challenging.

6. Conclusion
In this paper, we introduced the Bongard-HOI benchmark

focusing on the few-shot learning and the generalization
with compositional concepts in real-world visual relation-
ship reasoning. Drawing inspirations from the classic Bon-
gard problems [3], we constructed few-shot instances us-
ing the visual relationships between humans and objects as
the underlying concepts. Our benchmark is built on top of
an existing HOI dataset, HAKE [23], where we carefully
curated the provided annotations to construct the few-shot
instances. We benchmarked state-of-the-art few-shot learn-
ing methods, including both non-episodic and meta-learning
approaches. Our findings suggested that current machine
learning models still struggle to generalize beyond concepts
that they have seen during the training process. Moreover,
natural images in our benchmark contain rich stimuli, impos-



ing great challenges to the machine learning models in the
real-world visual relationship reasoning tasks. By building
the Bongard-HOI benchmark, we hope to foster research
efforts in real-world visual relationship reasoning, especially
in holistic perception-reasoning systems and better represen-
tation learning.
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